Comptes Rendus
The formation of filamentary structures from molten silicates: Peleʼs hair, angel hair, and blown clinker
Comptes Rendus. Mécanique, Volume 340 (2012) no. 8, pp. 555-564.

We conduct an analysis of the concomitant, competing phenomena at play in the formation of long filamentary structures from a stream of hot, very viscous and cohesive liquid as it is blown by a fast, cool air stream. The situation is relevant to a broad class of problems, namely volcanic glass threads or fibers formed when small particles of molten material are thrown into the air and spun out by the wind into long hair-like strands (called Peleʼs hair), to the process of prilling, the manufacture of glass fibers, and the formation of coke in furnaces and combustion chambers.

The air stream blowing on the molten material both breaks up the liquid into fragments stabilized by capillarity, and cools the liquid down to solidification. There are, in this problem, four characteristic times. First, a deformation time of the liquid masses, setting the rate at which drops elongate into ligaments. Then, two timescales set the time of capillary breakup of these ligaments, one prevailing on the other depending on the relative weight of inertia on viscous slowing (that point is illustrated by an original experiment). Finally, a solidification time of the ligaments. Thin solid strands will only form when solidification occurs before capillary breakup. We have discovered that this condition is likely to apply when the liquid is strongly viscous, as for clinker in the cement industry, considered here as a generic example. We formulate recommendations to remove (or enhance) the formation of these objects.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2012.06.003
Mots clés : Fluid mechanics, Atomization, Solidification, Ligaments, Capillary breakup, Morphogenesis
Emmanuel Villermaux 1, 2

1 Aix-Marseille université, IRPHE, technopôle de château-Gombert, 49, rue Frédéric Joliot-Curie, 13384 Marseille cedex 13, France
2 Institut Universitaire de France, France
@article{CRMECA_2012__340_8_555_0,
     author = {Emmanuel Villermaux},
     title = {The formation of filamentary structures from molten silicates: {Pele's} hair, angel hair, and blown clinker},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {555--564},
     publisher = {Elsevier},
     volume = {340},
     number = {8},
     year = {2012},
     doi = {10.1016/j.crme.2012.06.003},
     language = {en},
}
TY  - JOUR
AU  - Emmanuel Villermaux
TI  - The formation of filamentary structures from molten silicates: Peleʼs hair, angel hair, and blown clinker
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 555
EP  - 564
VL  - 340
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crme.2012.06.003
LA  - en
ID  - CRMECA_2012__340_8_555_0
ER  - 
%0 Journal Article
%A Emmanuel Villermaux
%T The formation of filamentary structures from molten silicates: Peleʼs hair, angel hair, and blown clinker
%J Comptes Rendus. Mécanique
%D 2012
%P 555-564
%V 340
%N 8
%I Elsevier
%R 10.1016/j.crme.2012.06.003
%G en
%F CRMECA_2012__340_8_555_0
Emmanuel Villermaux. The formation of filamentary structures from molten silicates: Peleʼs hair, angel hair, and blown clinker. Comptes Rendus. Mécanique, Volume 340 (2012) no. 8, pp. 555-564. doi : 10.1016/j.crme.2012.06.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.06.003/

[1] D. Shimozuru Physical parameters governing the formation of Peleʼs hair and tears, Bull. Volcanol., Volume 56 (1994), pp. 217-219

[2] S. Moune; F. Faure; P.J. Gauthier; K.W.W. Sims Peleʼs hairs and tears: Natural probe of volcanic plume, J. Volcanol. Geotherm. Res., Volume 164 (2007), pp. 244-253

[3] J. Eggers; E. Villermaux Physics of liquid jets, Rep. Prog. Phys., Volume 71 (2008), p. 036601

[4] L.G. Mastin; O. Spieler; W.S. Downey An experimental study of hydromagmatic fragmentation through energetic, non-explosive magma–water mixing, J. Volcanol. Geotherm. Res., Volume 180 (2009), pp. 161-170

[5] A.J. Yule; J.J. Dunkey Atomization of Melts, Clarendon Press, Oxford, 1994

[6] H.J. Melosh; A.M. Vickery Melt droplet formation in energetic impact events, Nature, Volume 350 (1991), pp. 494-497

[7] E. Villermaux; B. Bossa Single drop fragmentation determines size distribution of raindrops, Nature Physics, Volume 5 (2009), pp. 697-702

[8] P.H. Clay The mechanism of emulsion formation in turbulent flow. 1. Experimental part, Proc. Roy. Acad. Sci. (Amsterdam), Volume 43 (1940), pp. 852-865

[9] A.N. Kolmogorov On the breakage of drops in a turbulent flow, Dokl. Akad. Nauk SSSR, Volume 66 (1949), pp. 825-828

[10] J.O. Hinze Critical speeds and sizes of liquid globules, Appl. Sci. Res. A, Volume 1 (1949), pp. 273-288

[11] J.O. Hinze Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes, AIChE J., Volume 1 (1955), pp. 289-295

[12] G.M. Faeth; L.P. Hsiang; P.K. Wu Structure and breakup properties of sprays, Int. J. Multiphase Flow, Volume 21 (1995), pp. 99-127

[13] W.-H. Chou; G.M. Faeth Temporal properties of secondary drop breakup in the bag breakup regime, Int. J. Multiphase Flow, Volume 24 (1998), pp. 889-912

[14] P. Marmottant; E. Villermaux On spray formation, J. Fluid Mech., Volume 498 (2004), pp. 73-112

[15] L. Landau; E. Lifshitz Fluid Mechanics, Pergamon Press, Oxford, 1987

[16] P. Meunier; E. Villermaux The diffusive strip method for scalar mixing in two-dimensions, J. Fluid Mech., Volume 662 (2010), pp. 134-172

[17] H.S. Carslaw; J.C. Jaeger Conduction of Heat in Solids, Clarendon Press, Oxford, 1986

[18] L.C. Klein; H. Yinnon; D.R. Uhlmann Viscous flow and crystallization behavior of tektite glasses, J. Geophys. Res., Volume 85 (1980), pp. 5485-5489

[19] T.G. Skublov; B.Yu. Marin; M.V. Semikolennykh; G.S. Skublov; N.Yu. Tarasenko Volkhovite: A new type of tektite-like glass, Geol. Ore Depos., Volume 49 (2007), pp. 681-696

[20] T.G. Skublov et al. Kirishites—high-carbonaceous hairlike fibers associated with volkhovites, Geol. Ore Depos., Volume 51 (2009), pp. 698-711

[21] D.A. Clague; J.B. Paduan; A.S. Davis Widespread strombolian eruptions of mid-ocean ridge basalt, J. Volcanol. Geotherm. Res., Volume 180 (2009), pp. 171-188

[22] L.G. Mastin Generation of fine hydromagmatic ash by growth and disintegration of glassy rinds, J. Geophys. Res., Volume 112 (2007), p. B02203

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Liquid sheet disintegration at high pressure: An experimental approach

V.G. Fernandez; P. Berthoumie; G. Lavergne

C. R. Méca (2009)


Use of Faraday instabilities to enhance fuel pulverisation in air-blast atomisers

Madjid Boukra; Alain Cartellier; Éric Ducasse; ...

C. R. Méca (2009)


Numerical simulation of primary and secondary atomization

Davide Zuzio; Jean-Luc Estivalezes; Philippe Villedieu; ...

C. R. Méca (2013)