We conduct an analysis of the concomitant, competing phenomena at play in the formation of long filamentary structures from a stream of hot, very viscous and cohesive liquid as it is blown by a fast, cool air stream. The situation is relevant to a broad class of problems, namely volcanic glass threads or fibers formed when small particles of molten material are thrown into the air and spun out by the wind into long hair-like strands (called Peleʼs hair), to the process of prilling, the manufacture of glass fibers, and the formation of coke in furnaces and combustion chambers.
The air stream blowing on the molten material both breaks up the liquid into fragments stabilized by capillarity, and cools the liquid down to solidification. There are, in this problem, four characteristic times. First, a deformation time of the liquid masses, setting the rate at which drops elongate into ligaments. Then, two timescales set the time of capillary breakup of these ligaments, one prevailing on the other depending on the relative weight of inertia on viscous slowing (that point is illustrated by an original experiment). Finally, a solidification time of the ligaments. Thin solid strands will only form when solidification occurs before capillary breakup. We have discovered that this condition is likely to apply when the liquid is strongly viscous, as for clinker in the cement industry, considered here as a generic example. We formulate recommendations to remove (or enhance) the formation of these objects.
Accepté le :
Publié le :
Emmanuel Villermaux 1, 2
@article{CRMECA_2012__340_8_555_0, author = {Emmanuel Villermaux}, title = {The formation of filamentary structures from molten silicates: {Pele's} hair, angel hair, and blown clinker}, journal = {Comptes Rendus. M\'ecanique}, pages = {555--564}, publisher = {Elsevier}, volume = {340}, number = {8}, year = {2012}, doi = {10.1016/j.crme.2012.06.003}, language = {en}, }
TY - JOUR AU - Emmanuel Villermaux TI - The formation of filamentary structures from molten silicates: Peleʼs hair, angel hair, and blown clinker JO - Comptes Rendus. Mécanique PY - 2012 SP - 555 EP - 564 VL - 340 IS - 8 PB - Elsevier DO - 10.1016/j.crme.2012.06.003 LA - en ID - CRMECA_2012__340_8_555_0 ER -
Emmanuel Villermaux. The formation of filamentary structures from molten silicates: Peleʼs hair, angel hair, and blown clinker. Comptes Rendus. Mécanique, Volume 340 (2012) no. 8, pp. 555-564. doi : 10.1016/j.crme.2012.06.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.06.003/
[1] Physical parameters governing the formation of Peleʼs hair and tears, Bull. Volcanol., Volume 56 (1994), pp. 217-219
[2] Peleʼs hairs and tears: Natural probe of volcanic plume, J. Volcanol. Geotherm. Res., Volume 164 (2007), pp. 244-253
[3] Physics of liquid jets, Rep. Prog. Phys., Volume 71 (2008), p. 036601
[4] An experimental study of hydromagmatic fragmentation through energetic, non-explosive magma–water mixing, J. Volcanol. Geotherm. Res., Volume 180 (2009), pp. 161-170
[5] Atomization of Melts, Clarendon Press, Oxford, 1994
[6] Melt droplet formation in energetic impact events, Nature, Volume 350 (1991), pp. 494-497
[7] Single drop fragmentation determines size distribution of raindrops, Nature Physics, Volume 5 (2009), pp. 697-702
[8] The mechanism of emulsion formation in turbulent flow. 1. Experimental part, Proc. Roy. Acad. Sci. (Amsterdam), Volume 43 (1940), pp. 852-865
[9] On the breakage of drops in a turbulent flow, Dokl. Akad. Nauk SSSR, Volume 66 (1949), pp. 825-828
[10] Critical speeds and sizes of liquid globules, Appl. Sci. Res. A, Volume 1 (1949), pp. 273-288
[11] Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes, AIChE J., Volume 1 (1955), pp. 289-295
[12] Structure and breakup properties of sprays, Int. J. Multiphase Flow, Volume 21 (1995), pp. 99-127
[13] Temporal properties of secondary drop breakup in the bag breakup regime, Int. J. Multiphase Flow, Volume 24 (1998), pp. 889-912
[14] On spray formation, J. Fluid Mech., Volume 498 (2004), pp. 73-112
[15] Fluid Mechanics, Pergamon Press, Oxford, 1987
[16] The diffusive strip method for scalar mixing in two-dimensions, J. Fluid Mech., Volume 662 (2010), pp. 134-172
[17] Conduction of Heat in Solids, Clarendon Press, Oxford, 1986
[18] Viscous flow and crystallization behavior of tektite glasses, J. Geophys. Res., Volume 85 (1980), pp. 5485-5489
[19] Volkhovite: A new type of tektite-like glass, Geol. Ore Depos., Volume 49 (2007), pp. 681-696
[20] et al. Kirishites—high-carbonaceous hairlike fibers associated with volkhovites, Geol. Ore Depos., Volume 51 (2009), pp. 698-711
[21] Widespread strombolian eruptions of mid-ocean ridge basalt, J. Volcanol. Geotherm. Res., Volume 180 (2009), pp. 171-188
[22] Generation of fine hydromagmatic ash by growth and disintegration of glassy rinds, J. Geophys. Res., Volume 112 (2007), p. B02203
Cité par Sources :
Commentaires - Politique