Comptes Rendus
Progress and challenges in swirling flame dynamics
Comptes Rendus. Mécanique, Volume 340 (2012) no. 11-12, pp. 758-768.

In many continuous combustion processes the flame is stabilized by swirling the injected flow. This is the case for example in aeroengine combustors or in gas turbines where aerodynamic injectors impart a rotating component to the flow to create a central recirculation zone which anchors the flame. Swirling flame dynamics is of technical interest and also gives rise to interesting scientific issues. Some of the recent progress in this field will be reviewed. It is first shown that the swirler response to incident acoustic perturbations generates a vorticity wave which is convected by the flow. A result of this process is that the swirl number fluctuates. It is then shown that the flame response is defined by a combination of heat release rate fluctuations induced by the incoming acoustic and convective perturbations. This is confirmed by experimental measurements and by large eddy simulations of the reactive flow. Measured flame describing functions (FDFs) are then used to characterize the nonlinear response of swirling flames to incident perturbations and determine the regimes of instability of a generic system comprising an upstream manifold, an injector equipped with a swirler and a combustion chamber confining the flame. The last part of this article is concerned with interactions of the precessing vortex core (PVC) with incoming acoustic perturbations. The PVC is formed at high swirl number and this hydrodynamic helical instability gives rise to some interesting nonlinear interactions between the acoustic frequency, the PVC frequency and their difference frequency.

Publié le :
DOI : 10.1016/j.crme.2012.10.024
Mots clés : Combustion dynamics, Swirling flames, Flame describing function, Swirl fluctuations
Sébastien Candel 1, 2 ; Daniel Durox 1, 2 ; Thierry Schuller 1, 2 ; Paul Palies 1, 2 ; Jean-François Bourgouin 1, 2, 3 ; Jonas P. Moeck 4

1 CNRS, UPR 288, Laboratoire dʼénergétique moléculaire et macroscopique combustion (EM2C), 92295 Châtenay-Malabry, France
2 Ecole Centrale Paris, 92295 Châtenay-Malabry, France
3 SNECMA (Safran Group), Centre de Villaroche, 77550 Moissy-Cramayel, France
4 Institut für Strömungsmechanik und Technische Akustik, Technische Universität Berlin, 10623 Berlin, Germany
@article{CRMECA_2012__340_11-12_758_0,
     author = {S\'ebastien Candel and Daniel Durox and Thierry Schuller and Paul Palies and Jean-Fran\c{c}ois Bourgouin and Jonas P. Moeck},
     title = {Progress and challenges in swirling flame dynamics},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {758--768},
     publisher = {Elsevier},
     volume = {340},
     number = {11-12},
     year = {2012},
     doi = {10.1016/j.crme.2012.10.024},
     language = {en},
}
TY  - JOUR
AU  - Sébastien Candel
AU  - Daniel Durox
AU  - Thierry Schuller
AU  - Paul Palies
AU  - Jean-François Bourgouin
AU  - Jonas P. Moeck
TI  - Progress and challenges in swirling flame dynamics
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 758
EP  - 768
VL  - 340
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crme.2012.10.024
LA  - en
ID  - CRMECA_2012__340_11-12_758_0
ER  - 
%0 Journal Article
%A Sébastien Candel
%A Daniel Durox
%A Thierry Schuller
%A Paul Palies
%A Jean-François Bourgouin
%A Jonas P. Moeck
%T Progress and challenges in swirling flame dynamics
%J Comptes Rendus. Mécanique
%D 2012
%P 758-768
%V 340
%N 11-12
%I Elsevier
%R 10.1016/j.crme.2012.10.024
%G en
%F CRMECA_2012__340_11-12_758_0
Sébastien Candel; Daniel Durox; Thierry Schuller; Paul Palies; Jean-François Bourgouin; Jonas P. Moeck. Progress and challenges in swirling flame dynamics. Comptes Rendus. Mécanique, Volume 340 (2012) no. 11-12, pp. 758-768. doi : 10.1016/j.crme.2012.10.024. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.024/

[1] Y.B. Zeldovich; G.I. Barenblatt; V.B. Librovich; G.M. Makhviladze The Mathematical Theory of Combustion and Explosions, Plenum Press, New York, 1985 (English translation)

[2] A. Liñán The asymptotic structure of counterflow diffusion flames for large activation energies, Acta Astronautica, Volume 1 (1974), p. 1007

[3] P. Pelcé; P. Clavin Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames, Journal of Fluid Mechanics, Volume 124 (1982), pp. 219-237

[4] P. Clavin Dynamic behavior of premixed flame fronts in laminar and turbulent flows, Progress in Energy and Combustion Science, Volume 11 (1985), pp. 1-59

[5] P. Clavin Dynamics of combustion fronts in premixed gases: from flames to detonations, Proceedings of the Combustion Institute, Volume 28 (2000), pp. 569-586

[6] G.I. Sivashinsky Some developments in premixed combustion modeling, Proceedings of the Combustion Institute, Volume 29 (2002), pp. 1737-1761

[7] J.D. Buckmaster; G.S.S. Ludford Theory of Laminar Flames, Cambridge Univ. Press, 1982

[8] A.K. Kapila Asymptotic Treatment of Chemically Reacting Systems, Pitman, Boston, 1983

[9] F.A. Williams Combustion Theory, Benjamin Cummings, Menlo Park, CA, 1985

[10] C.K. Law Dynamics of stretched flames, Proceedings of the Combustion Institute, Volume 22 (1988), pp. 1381-1402

[11] C.K. Law; C.J. Sung Structure, aerodynamics and geometry of premixed flamelets, Progress in Energy and Combustion Science, Volume 26 (2000), pp. 459-505

[12] C.K. Law Combustion Physics, Cambridge Univ. Press, 2006

[13] M. Matalon; B.J. Matkowsky Flames as gasdynamic discontinuities, Journal of Fluid Mechanics, Volume 124 (1982), p. 239

[14] M. Matalon Flame dynamics, Proceedings of the Combustion Institute, Volume 32 (2009), pp. 57-82

[15] J. Buckmaster; P. Clavin; A. Liñán; M. Matalon; N. Peters; G. Sivashinsky; F.A. Williams Combustion theory and modeling, Proceedings of the Combustion Institute, Volume 30 (2005), pp. 1-19

[16] S. Candel Combustion dynamics and control: progress and challenges, Proceedings of the Combustion Institute, Volume 29 (2002), pp. 1-28

[17] F.E.C. Culick; V. Burnley; G. Swenson Pulsed instabilities in solid-propellant rockets, Journal of Propulsion and Power, Volume 11 (1995) no. 4, pp. 657-665

[18] F.E.C. Culick, Unsteady motions in combustion chambers for propulsion systems, AGARDograph, NATO/RTO-AG-AVT-039, 2006.

[19] Y. Huang; V. Yang Dynamics and stability of lean-premixed swirl-stabilized combustion, Progress in Energy and Combustion Science, Volume 35 (2009) no. 4, pp. 293-384

[20] H. Tsien Servo-stabilization of combustion in rocket motors, Journal of the American Rocket Society, Volume 22 (1952), pp. 256-263

[21] L. Crocco Aspects of combustion instability in liquid propellant rocket motors. Part I, Journal of the American Rocket Society, Volume 21 (1951), pp. 163-178

[22] L. Crocco; S.I. Cheng Theory of Combustion Instability in Liquid Propellant Rocket Motors, AGARDograph, vol. 8, Butterworths Science, 1956

[23] F.E. Marble; D.W. Cox Servo-stabilization of low-frequency oscillations in a liquid bipropellant rocket motor, Journal of the American Rocket Society, Volume 23 (1953) no. 2, p. 63

[24] D.J. Harrje, F.H. Reardon, Liquid propellant rocket instability, Tech. Rep. SP-194, NASA, 1972.

[25] K. McManus; T. Poinsot; S. Candel A review of active control of combustion instabilities, Progress in Energy and Combustion Science, Volume 19 (1993), pp. 1-29

[26] Combustion Instabilities in Gas Turbines, Operational Experience, Fundamental Mechanisms, and Modeling (T.C. Lieuwen; V. Yang, eds.), Progress in Astronautics and Aeronautics, vol. 210, American Institute of Aeronautics and Astronautics, Inc., 2005

[27] R. Pertersen; H. Emmons Stability of laminar flames, Physics of Fluids, Volume 4 (1961), pp. 456-464

[28] S. Ducruix; D. Durox; S. Candel Theoretical and experimental determination of the transfer function of a laminar premixed flame, Proceedings of the Combustion Institute, Volume 28 (2000), pp. 765-773

[29] S. Ducruix; T. Schuller; D. Durox; S. Candel Combustion dynamics and instabilities: Elementary coupling and driving mechanisms, Journal of Propulsion and Power, Volume 19 (2003) no. 5, pp. 722-734

[30] D. Durox; T. Schuller; S. Candel Combustion dynamics of inverted conical flames, Proceedings of the Combustion Institute, Volume 30 (2005), pp. 1717-1724

[31] R. Balachandran; B. Ayoola; C. Kaminski; A. Dowling; E. Mastorakos Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations, Combustion and Flame, Volume 143 (2005) no. 1–2, pp. 37-55

[32] V.N. Kornilov; K.R.A.M. Schreel; L.P.H. de Goey Experimental assessment of the acoustic response of laminar premixed Bunsen flames, Proceedings of the Combustion Institute, Volume 31 (2007), pp. 1239-1246

[33] A. Birbaud; S. Ducruix; D. Durox; S. Candel The nonlinear response of inverted “V” flames to equivalence ratio non-uniformities, Combustion and Flame, Volume 154 (2008) no. 3, pp. 356-367

[34] T. Poinsot; A. Trouvé; D. Veynante; S. Candel; E. Esposito Vortex-driven acoustically coupled combustion instabilities, Journal of Fluid Mechanics, Volume 177 (1987), pp. 265-292

[35] T. Lieuwen; B. Zinn The role of equivalence ratio fluctuations in driving combustion instabilities in low NOx, gas turbines, Proceedings of the Combustion Institute, Volume 27 (1998), pp. 1809-1816

[36] T. Lieuwen Modeling premixed combustion-acoustic wave interactions: A review, Journal of Propulsion and Power, Volume 19 (2003) no. 5, pp. 765-781

[37] H. Schwarz; L. Zimmer; D. Durox; S. Candel Detailed measurements of equivalence ratio modulations in premixed flames using laser Rayleigh scattering and absorption spectroscopy, Experiments in Fluids, Volume 49 (2010), pp. 809-821

[38] T. Schuller; D. Durox; S. Candel Dynamics of and noise radiated by a perturbed impinging premixed jet flame, Combustion and Flame, Volume 128 (2002), pp. 88-110

[39] Nonsteady Flame Propagation (G.H. Markstein, ed.), Pergamon Press, Elmsford, NY, 1964

[40] C.K. Law Propagation, structure, and limit phenomena of laminar flames at elevated pressures, Combustion Science and Technology, Volume 178 (2006), pp. 335-360

[41] H. Wang; C. Law; T. Lieuwen Linear response of stretch-affected premixed flames to flow oscillations, Combustion and Flame, Volume 156 (2009), pp. 889-895

[42] R. Lauvergne; F. Egolfopoulos Unsteady response of C3H8–air laminar premixed flame submitted to mixture composition oscillations, Proceedings of the Combustion Institute, Volume 28 (2000), pp. 1841-1850

[43] K. Schreel; R. Rook; L. de Goey The acoustic response of burner stabilized premixed flat flames, Proceedings of the Combustion Institute, Volume 29 (2002), pp. 115-122

[44] L. de Goey; J. van Oijen; J. ten Thije Bookkamp Propagation, dynamics and control of laminar premixed flames, Proceedings of the Combustion Institute, Volume 33 (2011), pp. 863-886

[45] T. Schuller; D. Durox; S. Candel A unified model for the prediction of laminar flame transfer functions: comparison between conical and V-flame dynamics, Combustion and Flame, Volume 134 (2003), pp. 21-34

[46] C. Paschereit; E. Gutmark; W. Weisenstein Coherent structures in swirling flows and their role in acoustic combustion control, Physics of Fluids, Volume 11 (1999) no. 9, pp. 2667-2678

[47] Y. Huang; V. Yang Bifurcation of flame structure in a lean-premixed swirl-stabilized combustor: transition from stable to unstable flame, Combustion and Flame, Volume 136 (2004), pp. 383-389

[48] C.O. Paschereit; B. Schuermans; V. Bellucci; P. Flohr Combustion Instabilities in Gas Turbine Engines, Progress in Astronautics and Aeronautics, vol. 210, American Institute of Aeronautics and Astronautics, Inc., 2005 (Ch. 15)

[49] N. Syred A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems, Progress in Energy and Combustion Science, Volume 32 (2006), pp. 93-161

[50] S. Thumuluru; T. Lieuwen Characterization of acoustically forced swirl flame dynamics, Proceedings of the Combustion Institute, Volume 32 (2009), pp. 2893-2900

[51] T. Komarek; W. Polifke Impact of swirl fluctuations on the flame response of a perfectly premixed swirl burner, Journal of Engineering for Gas Turbines and Power, Volume 132 (2010) no. 6, p. 061503

[52] A. Steinberg; I. Boxx; M. Stöhr; C. Carter; W. Meier Flow–flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor, Combustion and Flame, Volume 157 (2010), pp. 2250-2266

[53] D. Kim; J.G. Lee; B.D. Quay; D. Santavicca; K. Kim; S. Srinivasan Effect of flame structure on the flame transfer function in a premixed gas turbine combustor, Journal of Engineering for Gas Turbines and Power, Volume 132 (2010), p. 021502

[54] K. Kim; J. Lee; H. Lee; B. Quay; D. Santavicca Characterization of forced flame response of swirl-stabilized turbulent lean-premixed flames in a gas turbine combustor, Journal of Engineering for Gas Turbines and Power, Volume 132 (2010), p. 041502

[55] P. Palies; D. Durox; T. Schuller; S. Candel Dynamics of premixed confined swirling flames, Comptes Rendus Mécanique, Volume 337 (2009), pp. 395-405

[56] P. Palies; D. Durox; T. Schuller; S. Candel The combined dynamics of swirler and turbulent premixed swirling flames, Combustion and Flame, Volume 157 (2010), pp. 1698-1717

[57] P. Palies; T. Schuller; D. Durox; L. Gicquel; S. Candel Acoustically perturbed turbulent premixed swirling flames, Physics of Fluids, Volume 23 (2011), p. 037101 (15 pages)

[58] G. Staffelbach; L. Gicquel; G. Boudier; T. Poinsot Large eddy simulation of self excited azimuthal modes in annular combustors, Proceedings of the Combustion Institute, Volume 32 (2009), pp. 2909-2916

[59] N. Cumpsty; F. Marble The interaction of entropy fluctuations with turbine blade rows; a mechanism of turbojet engine noise, Proceedings of the Royal Society of London, Series A, Volume 357 (1977), pp. 323-344

[60] P. Palies; D. Durox; T. Schuller; S. Candel Acoustic-convective mode conversion in an airfoil cascade, Journal of Fluid Mechanics, Volume 672 (2011), pp. 545-569

[61] P. Palies, D. Durox, T. Schuller, S. Candel, The response of swirling premixed flames to velocity perturbations, in: Proceedings of the Fourth European Combustion Meeting, Vienna, Austria, 14–17 April 2009.

[62] T. Schuller, D. Durox, A. Cuquel, P. Palies, J. Moeck, S. Candel, Modeling the response of premixed flame transfer functions – key elements and experimental proofs, in: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, 9–12 January 2012, AIAA 2012-0985.

[63] L. Boyer; J. Quinard On the dynamics of anchored flames, Combustion and Flame, Volume 82 (1990) no. 1, pp. 51-65

[64] P. Palies; T. Schuller; D. Durox; S. Candel Modeling of swirling flames transfer functions, Proceedings of the Combustion Institute, Volume 33 (2011), pp. 2967-2974

[65] A.P. Dowling; S.R. Stow Acoustic analysis of gas turbine combustors, Journal of Propulsion and Power, Volume 19 (2003) no. 5, pp. 751-764

[66] T. Sattelmayer Influence of the combustor aerodynamics on combustion instabilities from equivalence ratio fluctuations, Journal of Engineering for Gas Turbines and Power, Volume 125 (2003), pp. 11-19

[67] T. Poinsot; D. Veynante Theoretical and Numerical Combustion, Edwards, 2005

[68] K. Truffin; T. Poinsot Comparison and extension of methods for acoustic identification of burners, Combustion and Flame, Volume 142 (2005) no. 4, pp. 388-400

[69] C.O. Paschereit; B. Schuermans; W. Polifke; O. Mattson Measurement of transfer matrices and source terms of premixed flames, Journal of Engineering for Gas Turbines and Power, Volume 124 (2002), pp. 239-247

[70] W. Krebs; P. Flohr; B. Prade; S. Hoffmann Thermoacoustic stability chart for high intensity, Combustion Science and Technology, Volume 174 (2002) no. 7, pp. 99-128

[71] B. Schuermans, F. Guethe, D. Pennel, D. Guyot, C.O. Paschereit, Thermoacoustic modeling of a gas turbine using transfer functions measured at full engine pressure, in: ASME Turbo Expo 2009: Power for Land, Sea, and Air, Orlando, FL, USA, June 8–12, 2009, Paper No. GT2009-59605, pp. 503–514.

[72] A. Dowling A kinematic model of a ducted flame, Journal of Fluid Mechanics, Volume 394 (1999), pp. 51-72

[73] N. Noiray; D. Durox; T. Schuller; S. Candel A unified framework for nonlinear combustion instability analysis based on the flame describing function, Journal of Fluid Mechanics, Volume 615 (2008), pp. 139-167

[74] F. Boudy; D. Durox; T. Schuller; S. Candel Nonlinear mode triggering in a multiple flame combustor, Proceedings of the Combustion Institute, Volume 33 (2011), pp. 1121-1128

[75] F. Boudy; D. Durox; T. Schuller; G. Jomaas; S. Candel Describing function analysis of limit cycles in a multiple flame combustor, Journal of Engineering for Gas Turbines and Power, Volume 133 (2011), p. 061502

[76] P. Palies; D. Durox; T. Schuller; S. Candel Nonlinear combustion instabilities analysis based on the flame describing function applied to turbulent premixed swirling flames, Combustion and Flame, Volume 158 (2011), pp. 1980-1991

[77] M. Stohr; I. Boxx; C. Carter; W. Meier Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor, Proceedings of the Combustion Institute, Volume 33 (2011), pp. 2953-2960

[78] A. Gupta; G. Lilley; N. Syred Swirl Flows, Abacus Press, Kent, England, 1984

[79] C.O. Paschereit; E. Gutmark; W. Weisenstein Excitation of thermoacoustic instabilities by interaction of acoustics and unstable swirling flow, AIAA Journal, Volume 38 (2000) no. 6, pp. 1025-1034

[80] I. Boxx; M. Stöhr; C. Carter; W. Meier Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor, Combustion and Flame, Volume 157 (2010), pp. 1510-1525

[81] J. Moeck; J. Bourgouin; D. Durox; T. Schuller; S. Candel Nonlinear interaction between a precessing vertex core and acoustic oscillations in a turbulent swirl flame, Combustion and Flame, Volume 159 (2012), pp. 2650-2668

[82] A. Lacarelle; T. Faustmann; D. Greenblatt; C. Paschereit; O. Lehmann; D. Luchtenburg; B. Noack Spatiotemporal characterization of a conical swirler flow field under strong forcing, Journal of Engineering for Gas Turbines and Power, Volume 131 (2009), p. 031504

[83] P. Ludiciani; C. Duwig Large eddy simulation of the sensitivity of vortex breakdown and flame stabilisation to axial forcing, Flow, Turbulence and Combustion, Volume 86 (2011), pp. 639-666

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Dynamics of premixed confined swirling flames

P. Palies; D. Durox; T. Schuller; ...

C. R. Méca (2009)


Sensitivity of swirling flows to small changes in the swirler geometry

Jean-François Bourgouin; Jonas Moeck; Daniel Durox; ...

C. R. Méca (2013)


Characterization of the coherent structures in swirling flames stabilized in a two-staged multi-injection burner: Influence of the staging factor

Theodore Providakis; Laurent Zimmer; Philippe Scouflaire; ...

C. R. Méca (2013)