Comptes Rendus
A hybrid two-phase mixture model of detonation diffraction with compliant confinement
Comptes Rendus. Mécanique, Out of Equilibrium Dynamics, Volume 340 (2012) no. 11-12, pp. 804-817.

A multi-material two-phase hybrid model of heterogeneous explosives, with a reaction rate that is proportional to the gas-phase pressure excess above an ignition threshold, is examined computationally. The explosive is confined within a compliant inert, and the focus is on the behavior of an established detonation as it rounds a 90° corner and undergoes diffraction. The numerical approach, a variant of Godunovʼs method, is designed to capture interfaces between materials that can undergo phase change, and extends previous work of the authors on rigidly-confined two-phase detonations. The dependence of the post-diffraction conduct on the strength of the confinement is explored by holding the reaction-rate prefactor and the ignition threshold fixed, and considering confiners of two different strengths. The aim is to determine whether a detonation that turns the corner successfully when rigidly confined can experience failure when the confinement is compliant.

Published online:
DOI: 10.1016/j.crme.2012.10.029
Keywords: Detonation, Diffraction, Dead zone, Compliant confinement, Multi-material two-phase model, Interface capturing

Donald W. Schwendeman 1; Ashwani K. Kapila 1; William D. Henshaw 2

1 Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
2 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
@article{CRMECA_2012__340_11-12_804_0,
     author = {Donald W. Schwendeman and Ashwani K. Kapila and William D. Henshaw},
     title = {A hybrid two-phase mixture model of detonation diffraction with compliant confinement},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {804--817},
     publisher = {Elsevier},
     volume = {340},
     number = {11-12},
     year = {2012},
     doi = {10.1016/j.crme.2012.10.029},
     language = {en},
}
TY  - JOUR
AU  - Donald W. Schwendeman
AU  - Ashwani K. Kapila
AU  - William D. Henshaw
TI  - A hybrid two-phase mixture model of detonation diffraction with compliant confinement
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 804
EP  - 817
VL  - 340
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crme.2012.10.029
LA  - en
ID  - CRMECA_2012__340_11-12_804_0
ER  - 
%0 Journal Article
%A Donald W. Schwendeman
%A Ashwani K. Kapila
%A William D. Henshaw
%T A hybrid two-phase mixture model of detonation diffraction with compliant confinement
%J Comptes Rendus. Mécanique
%D 2012
%P 804-817
%V 340
%N 11-12
%I Elsevier
%R 10.1016/j.crme.2012.10.029
%G en
%F CRMECA_2012__340_11-12_804_0
Donald W. Schwendeman; Ashwani K. Kapila; William D. Henshaw. A hybrid two-phase mixture model of detonation diffraction with compliant confinement. Comptes Rendus. Mécanique, Out of Equilibrium Dynamics, Volume 340 (2012) no. 11-12, pp. 804-817. doi : 10.1016/j.crme.2012.10.029. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.029/

[1] E.L. Lee; C.M. Tarver Phenomenological model of shock initiation in heterogeneous explosives, Phys. Fluids, Volume 23 (1980) no. 12, pp. 2362-2372

[2] C.M. Tarver, J.O. Hallquist, L.M. Erickson, Modelling short-pulse duration shock initiation of solid explosives, in: The Eighth Symposium (International) on Detonation, 1985, pp. 951–960.

[3] C.M. Tarver; J.W. Kury; R.D. Breithaupt Detonation waves in triaminonitrobenzene, J. Appl. Phys., Volume 82 (1997), pp. 3771-3782

[4] J.W. Kury; R.D. Breithaupt; C.M. Tarver Detonation waves in trinitrotoluene, Shock Waves, Volume 9 (1999), pp. 227-237

[5] C.M. Tarver, E.M. McGuire, Reactive flow modeling of the interaction of TATB detonation waves with inert materials, in: The Twelfth Symposium (International) on Detonation, 2002, pp. 641–649.

[6] M.R. Baer; J.W. Nunziato A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. Multiphase Flow, Volume 12 (1986), pp. 861-889

[7] M.R. Baer; R.J. Gross; J.W. Nunziato An experimental and theoretical study of deflagration-to-detonation transition (DDT) in the granular explosive CP, Combust. Flame, Volume 65 (1986), pp. 15-30

[8] M.R. Baer, J.W. Nunziato, Compressive combustion of granular materials induced by low-velocity impact, in: The Ninth Symposium (International) on Detonation, 1989, pp. 293–305.

[9] E. Ferm, C. Morris, J. Quintana, P. Pazuchanic, H. Stacy, J. Zumbro, G. Hogan, N. King, Proton radiography examination of unburned regions in PBX 9502 corner turning experiments, Tech. Rep. LA-UR-01-3555, Los Alamos National Laboratory, 2001.

[10] P.C. Souers; R. Garza; P. Vitello Ignition and growth and JWL++ detonation models in course zones, Propellants Explos. Pyrotech., Volume 27 (2002), pp. 62-71

[11] C.M. Tarver Ignition-and-growth modeling of LX-17 hockey puck experiments, Propellants Explos. Pyrotech., Volume 30 (2005), pp. 109-117

[12] A.K. Kapila; D.W. Schwendeman; J.B. Bdzil; W.D. Henshaw A study of detonation diffraction in the ignition-and-growth model, Combust. Theory Model., Volume 11 (2007), pp. 781-822

[13] J.B. Banks; D.W. Schwendeman; A.K. Kapila; W.D. Henshaw A study of detonation propagation and diffraction with compliant confinement, Combust. Theory Model., Volume 12 (2008), pp. 769-808

[14] G. de Olivera, A.K. Kapila, D.W. Schwendeman, J.B. Bdzil, W.D. Henshaw, C.M. Tarver, Detonation diffraction, dead zones, and the ignition-and-growth model, in: The Thirteenth Symposium (International) on Detonation, 2006.

[15] B.L. Wescott, D.S. Stewart, W.C. Davis, Modeling diffraction and dead zones in PBX-9502, in: The Thirteenth Symposium (International) on Detonation, 2006.

[16] D.W. Schwendeman; C.W. Wahle; A.K. Kapila The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow, J. Comput. Phys., Volume 212 (2006), pp. 490-526

[17] D.W. Schwendeman; C.W. Wahle; A.K. Kapila A study of detonation evolution and structure for a model of compressible two-phase reactive flow, Combust. Theory Model., Volume 12 (2008), pp. 159-204

[18] D.W. Schwendeman; A.K. Kapila; W.D. Henshaw A study of detonation diffraction and failure for a model of compressible two-phase reactive flow, Combust. Theory Model., Volume 14 (2010), pp. 331-366

[19] R. Abgrall How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach, J. Comput. Phys., Volume 125 (1996), pp. 150-160

[20] R. Saurel; R. Abgrall A simple method for compressible multifluid flows, SIAM J. Sci. Comput., Volume 21 (1999) no. 3, pp. 1115-1145

[21] M. Ozlem; D.W. Schwendeman; A.K. Kapila; W.D. Henshaw A numerical study of shock-induced cavity collapse, Shock Waves, Volume 22 (2012), pp. 89-117

[22] J.B. Bdzil; R. Menikoff; S.F. Son; A.K. Kapila; D.S. Stewart Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues, Phys. Fluids, Volume 11 (1999) no. 2, pp. 378-402

[23] W.D. Henshaw; D.W. Schwendeman An adaptive numerical scheme for high-speed reactive flow on overlapping grids, J. Comput. Phys., Volume 191 (2003) no. 2, pp. 420-447

[24] W.D. Henshaw; D.W. Schwendeman Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement, J. Comput. Phys., Volume 227 (2008), pp. 7469-7502

Cited by Sources:

Comments - Policy