Comptes Rendus
A quantitative theory of vegetation patterns based on plant structure and the non-local F–KPP equation
Comptes Rendus. Mécanique, Out of Equilibrium Dynamics, Volume 340 (2012) no. 11-12, pp. 818-828.

The theory of vegetation patterns presented rests on two hypotheses: (i) the self-organization hypothesis that attributes their cause to interactions intrinsic to vegetation dynamics; (ii) the complementary self-assembly hypothesis that attributes their large spatial scale to the proximity of their dynamical conditions with a critical point. A non-local version of the F–KPP equation allows us to formulate these hypotheses in terms of individual plant properties. Both general and parsimonious, this formulation is strictly quantitative. It only relies on structural parameters that can be measured with precision in the field. Quantitative interpretation of observations and of the predictions provided by the theory is illustrated by an analysis of the periodic patterns found in some Sub-Sahelian regions.

Published online:
DOI: 10.1016/j.crme.2012.10.030
Keywords: Vegetation pattern, F–KPP equation, Vegetation dynamics

René Lefever 1; John W. Turner 1

1 Faculté des sciences, C.P. 231, Université libre de Bruxelles, B-1050 Brussels, Belgium
@article{CRMECA_2012__340_11-12_818_0,
     author = {Ren\'e Lefever and John W. Turner},
     title = {A quantitative theory of vegetation patterns based on plant structure and the non-local {F{\textendash}KPP} equation},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {818--828},
     publisher = {Elsevier},
     volume = {340},
     number = {11-12},
     year = {2012},
     doi = {10.1016/j.crme.2012.10.030},
     language = {en},
}
TY  - JOUR
AU  - René Lefever
AU  - John W. Turner
TI  - A quantitative theory of vegetation patterns based on plant structure and the non-local F–KPP equation
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 818
EP  - 828
VL  - 340
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crme.2012.10.030
LA  - en
ID  - CRMECA_2012__340_11-12_818_0
ER  - 
%0 Journal Article
%A René Lefever
%A John W. Turner
%T A quantitative theory of vegetation patterns based on plant structure and the non-local F–KPP equation
%J Comptes Rendus. Mécanique
%D 2012
%P 818-828
%V 340
%N 11-12
%I Elsevier
%R 10.1016/j.crme.2012.10.030
%G en
%F CRMECA_2012__340_11-12_818_0
René Lefever; John W. Turner. A quantitative theory of vegetation patterns based on plant structure and the non-local F–KPP equation. Comptes Rendus. Mécanique, Out of Equilibrium Dynamics, Volume 340 (2012) no. 11-12, pp. 818-828. doi : 10.1016/j.crme.2012.10.030. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.030/

[1] P. Clavin; A. Liñan Nonequilibrium Cooperative Phenomena in Physics and Related Fields, NATO ASI Series B, vol. 116, Plenum Press, 1984

[2] P. Clavin Dynamic behavior of premixed flame fronts in laminar and turbulent flows, Prog. Energy Combust. Sci., Volume 11 (1985), p. 1

[3] W.A. Macfadyen Vegetation patterns in the semi-desert plains of British Somaliland, Geogr. J., Volume 116 (1950), pp. 199-211

[4] J.M. Thiéry; J.-M. dʼHerbès; C. Valentin A model simulating the genesis of banded vegetation patterns in Niger, J. Ecol., Volume 83 (1995), pp. 497-507

[5] R. Lefever; O. Lejeune On the origin of tiger bush, Bull. Math. Biol., Volume 59 (1997), pp. 263-294

[6] M. Tlidi; R. Lefever; A. Vladimirov On vegetation clustering, localized bare soil spots and fairy circles, Lecture Notes in Physics, vol. 751, Springer-Verlag, 2008, pp. 381-402

[7] R. Lefever; N. Barbier; P. Couteron; O. Lejeune Deeply gapped vegetation patterns: on crown/root allometry, criticality and desertification, J. Theor. Biol., Volume 261 (2009), pp. 194-209

[8] C.A. Klausmeier Regular and irregular patterns in semiarid vegetation, Science, Volume 284 (1999), pp. 1826-1828

[9] J.A. Sherratt An analysis of vegetation stripe formation in semi-arid landscapes, J. Math. Biol., Volume 51 (2005), pp. 183-197

[10] R. HilleRisLambers; M. Rietkerk; F. van den Bosch; H.H.T. Prins; H. de Kroon Vegetation pattern formation in semi-arid grazing systems, Ecology, Volume 82 (2001), pp. 50-61

[11] T. Okayasu; Y. Aizawa Systematic analysis of periodic vegetation patterns, Prog. Theor. Phys., Volume 106 (2001), pp. 705-719

[12] J. von Hardenberg; E. Meron; M. Shachak; Y. Zarmi Diversity of vegetation patterns and desertification, Phys. Rev. Lett., Volume 87 (2001) (198101, 4 pp)

[13] E. Gilad; J. von Hardenberg; A. Provenzale; M. Shachak; E. Meron Ecosystems engineers: from pattern formation to habitat creation, Phys. Rev. Lett., Volume 93 (2004) (098105, 4 pp)

[14] P. DʼOdorico; F. Laio; L. Ridolfi Patterns as indicators of productivity enhancement by facilitation and competition in dryland vegetation, J. Geophys. Res., Volume 111 (2006), p. G03010

[15] L. Ridolfi; P. DʼOdorico; F. Laio Noise-Induced Phenomena in the Environmental Sciences, Cambridge University Press, 2011

[16] N. Barbier, Interactions spatiales et auto-organisation des végétations semi-arides, PhD thesis, Université Libre de Bruxelles, 2006.

[17] R.M. Callaway Positive interactions among plants, Bot. Rev., Volume 61 (1995), pp. 306-349

[18] R.M. Callaway; S.C. Pennings; C.L. Richards Phenotypic plasticity and interactions among plants, Ecology, Volume 84 (2003), pp. 1115-1128

[19] N. Barbier; P. Couteron; R. Lefever; V. Deblauwe; O. Lejeune Spatial decoupling of facilitation and competition at the origin of gap vegetation patterns in SW Niger, Ecology, Volume 89 (2008), pp. 1521-1531

[20] V. Deblauwe, Modulation des structures de végétation auto-organisées en milieu aride, PhD thesis, Université Libre de Bruxelles, 2010.

Cited by Sources:

Comments - Policy