Comptes Rendus
Soliton-mediated compression density waves and charge density in 2d layers of underdoped cuprate-like lattices
Comptes Rendus. Mécanique, Volume 340 (2012) no. 11-12, pp. 910-916.

We study here the landscape of the excitations (compression density) of the nonlinear oxygen vibrations in a two-dimensional CuO2 layer. After studying regular lattices we investigate lattices with bonds which are weakly distorted due to an influence of weak doping (below the HTSC regime). We estimate the density of compressions (strain density) in dependence of a misfit of the CuO-bonds. We show that with increasing misfit the nonlinear oscillations of the O-atoms are organized in stripes. Assuming that the density of doping charges follows at least qualitatively the compression density, we discuss the stripe structures of the strain density as a possible origin for the experimentally observed stripe structures.

Publié le :
DOI : 10.1016/j.crme.2012.10.038
Mots clés : Anharmonicity, Solectrons, Cuprates
Manuel G. Velarde 1, 2 ; Werner Ebeling 1, 3 ; Alexander P. Chetverikov 1, 4

1 Instituto Pluridisciplinar, UCM, Paseo Juan XXIII, 1, 28040 Madrid, Spain
2 Fundación Universidad Alfonso X El Sabio, Villanueva de la Cañada, 28691 Madrid, Spain
3 Institut für Physik, Humboldt-Universität Berlin, Newtonstrasse 15, 12489 Berlin, Germany
4 Faculty of Physics, Saratov State University, Astrakhanskaya 83, Saratov-410012, Russia
@article{CRMECA_2012__340_11-12_910_0,
     author = {Manuel G. Velarde and Werner Ebeling and Alexander P. Chetverikov},
     title = {Soliton-mediated compression density waves and charge density in 2d layers of underdoped cuprate-like lattices},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {910--916},
     publisher = {Elsevier},
     volume = {340},
     number = {11-12},
     year = {2012},
     doi = {10.1016/j.crme.2012.10.038},
     language = {en},
}
TY  - JOUR
AU  - Manuel G. Velarde
AU  - Werner Ebeling
AU  - Alexander P. Chetverikov
TI  - Soliton-mediated compression density waves and charge density in 2d layers of underdoped cuprate-like lattices
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 910
EP  - 916
VL  - 340
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crme.2012.10.038
LA  - en
ID  - CRMECA_2012__340_11-12_910_0
ER  - 
%0 Journal Article
%A Manuel G. Velarde
%A Werner Ebeling
%A Alexander P. Chetverikov
%T Soliton-mediated compression density waves and charge density in 2d layers of underdoped cuprate-like lattices
%J Comptes Rendus. Mécanique
%D 2012
%P 910-916
%V 340
%N 11-12
%I Elsevier
%R 10.1016/j.crme.2012.10.038
%G en
%F CRMECA_2012__340_11-12_910_0
Manuel G. Velarde; Werner Ebeling; Alexander P. Chetverikov. Soliton-mediated compression density waves and charge density in 2d layers of underdoped cuprate-like lattices. Comptes Rendus. Mécanique, Volume 340 (2012) no. 11-12, pp. 910-916. doi : 10.1016/j.crme.2012.10.038. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.038/

[1] A.S. Davydov Solitons in Molecular Systems, Reidel, Dordrecht, 1991 (and references therein)

[2] A.P. Chetverikov; W. Ebeling; G. Röpke; M.G. Velarde Hopping transfer and stochastic dynamics of electrons in two-dimensional plasmas, Contrib. Plasma Phys., Volume 51 (2011), pp. 814-829

[3] A.P. Chetverikov; W. Ebeling; M.G. Velarde Soliton-like excitations and solectrons in two-dimensional nonlinear lattices, Eur. Phys. J. B, Volume 80 (2011), pp. 137-145

[4] A.P. Chetverikov; W. Ebeling; M.G. Velarde Localized nonlinear, soliton-like waves in two-dimensional anharmonic lattices, Wave Motion, Volume 48 (2011), pp. 753-760

[5] A.P. Chetverikov; W. Ebeling; M.G. Velarde Properties of nano-scale soliton-like excitations in two-dimensional lattice layers, Physica D, Volume 240 (2011), pp. 1954-1959

[6] A.P. Chetverikov; W. Ebeling; M.G. Velarde Soliton-like dynamical clusters in atomic layers (J.W. Schmelzer; G. Röpke; V.B. Priezzhev, eds.), Nucleation Theory and Applications, JINR Pub., Dubna, 2011, pp. 191-200

[7] M.G. Velarde, W. Ebeling, A.P. Chetverikov, Two-dimensional anharmonic crystal lattices: solitons, solectrons, and electric conduction, in: Proceedings FFP-12, Udine, 2012, in press.

[8] A.P. Chetverikov; W. Ebeling; M.G. Velarde Controlling fast electron transfer at the nano-scale by solitonic excitations along crystallographic axes, Eur. Phys. J. B, Volume 85 (2012), p. 291 (8 pp)

[9] K.A. Müller On the oxygen isotope effect and apex anharmonicity in high-Tc cuprates, Z. Phys. B – Condens. Matter, Volume 80 (1990), pp. 193-201

[10] J. Bednorz, K.A. Müller (Eds.), Superconductivity, Springer-Verlag, Berlin, 1990, p. 216.

[11] A. Bussmann-Holder; A. Simon; H. Büttner Possibility of a common origin to ferroelectricity and superconductivity in oxides, Phys. Rev. B, Volume 39 (1989), pp. 207-214

[12] A. Bussmann-Holder; A.R. Bishop Anharmonicity induced multiphonon processes in high-temperature superconductors, Phys. Rev. B, Volume 44 (1991), pp. 2853-2856

[13] A. Bussmann-Holder; A.R. Bishop Role of electron–two-phonon interaction in ferroelectrics and oxide superconductors, Ferroelectrics, Volume 128 (1992), pp. 99-104

[14] J.M. Tranquada; B.J. Sternlieb; J.D. Axe; Y. Nakamura; S. Uchida Evidence for stripe correlations of spins and holes in copper oxide superconductors, Nature, Volume 375 (1995), pp. 561-563

[15] D. Reznik; L. Pintschovius; M. Ito; S. Likubo; M. Sato; H. Goka; M. Fujita; K. Yamada; G.D. Gu; J.M. Tranquada Electron–phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductors, Nature, Volume 440 (2006), pp. 1170-1173

[16] V.J. Emery; S.A. Kivelson; J.M. Tranquada Stripe phases in high-temperature superconductors, PNAS, Volume 96 (1999), pp. 8814-8817

[17] Y. Kohsaka; C. Taylor; P. Wahl; A. Schmidt; Jhinhwan Lee; K. Fujita; J.W. Alldredge; K. McElroy; Jinho Lee; H. Eisaki; S. Uchida; D.-H. Lee; J.C. Davis How Cooper pairs vanish approaching the Mott insulator in Bi2Sr2CaCu2O8 + δ, Nature, Volume 454 (2008), pp. 1072-1078

[18] F. Carbone; D.-S. Yang; E. Giannini; A.H. Zewail Direct role of structural dynamics in electron–lattice coupling of superconducting cuprates, PNAS, Volume 105 (2008), pp. 20161-20166

[19] K.A. Moler High-temperature superconductivity: How the cuprates hid their stripes, Nature, Volume 468 (2010), pp. 643-644

[20] Y. Kohsaka; C. Taylor; K. Fujita; A. Schmidt; C. Lupien; T. Hanaguri; M. Azuma; M. Takano; H. Eisaki; H. Takagi; S. Uchida; J.C. Davis An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates, Science, Volume 315 (2007), pp. 1380-1385

[21] J. Zaanen Quantum stripe search, Nature, Volume 440 (2006), pp. 1118-1119

[22] D.J. Scalapino A common thread: The pairing interaction for the unconventional superconductors, Rev. Mod. Phys., Volume 84 (2012), pp. 1383-1417 (and references therein)

[23] D.M. Newns; C.C. Tsuei Fluctuating CuOCu bond model of high-temperature superconductivity, Nature Phys., Volume 3 (2007), pp. 184-191

[24] R.A. Nistor; G.J. Martyna; D.M. Newns; C.C. Tsuei; M.H. Müser Ab initio theory of the pseudogap in cuprate superconductors driven by C4 symmetry breaking, Phys. Rev. B, Volume 83 (2011), p. 144503

[25] A.S. Alexandrov Hight-temperature superconductivity: the explanation, Phys. Scr., Volume 83 (2011), p. 038301

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Novel magnetic order in the pseudogap state of high-Tc copper oxides superconductors

Philippe Bourges; Yvan Sidis

C. R. Phys (2011)


A spatial interpretation of emerging superconductivity in lightly doped cuprates

Guy Deutscher; Pierre-Gilles de Gennes

C. R. Phys (2007)


Probing the order parameter symmetry in the cuprate high temperature superconductors by SQUID microscopy

John R. Kirtley

C. R. Phys (2011)