We study here the landscape of the excitations (compression density) of the nonlinear oxygen vibrations in a two-dimensional CuO2 layer. After studying regular lattices we investigate lattices with bonds which are weakly distorted due to an influence of weak doping (below the HTSC regime). We estimate the density of compressions (strain density) in dependence of a misfit of the CuO-bonds. We show that with increasing misfit the nonlinear oscillations of the O-atoms are organized in stripes. Assuming that the density of doping charges follows at least qualitatively the compression density, we discuss the stripe structures of the strain density as a possible origin for the experimentally observed stripe structures.
Manuel G. Velarde 1, 2; Werner Ebeling 1, 3; Alexander P. Chetverikov 1, 4
@article{CRMECA_2012__340_11-12_910_0, author = {Manuel G. Velarde and Werner Ebeling and Alexander P. Chetverikov}, title = {Soliton-mediated compression density waves and charge density in 2d layers of underdoped cuprate-like lattices}, journal = {Comptes Rendus. M\'ecanique}, pages = {910--916}, publisher = {Elsevier}, volume = {340}, number = {11-12}, year = {2012}, doi = {10.1016/j.crme.2012.10.038}, language = {en}, }
TY - JOUR AU - Manuel G. Velarde AU - Werner Ebeling AU - Alexander P. Chetverikov TI - Soliton-mediated compression density waves and charge density in 2d layers of underdoped cuprate-like lattices JO - Comptes Rendus. Mécanique PY - 2012 SP - 910 EP - 916 VL - 340 IS - 11-12 PB - Elsevier DO - 10.1016/j.crme.2012.10.038 LA - en ID - CRMECA_2012__340_11-12_910_0 ER -
%0 Journal Article %A Manuel G. Velarde %A Werner Ebeling %A Alexander P. Chetverikov %T Soliton-mediated compression density waves and charge density in 2d layers of underdoped cuprate-like lattices %J Comptes Rendus. Mécanique %D 2012 %P 910-916 %V 340 %N 11-12 %I Elsevier %R 10.1016/j.crme.2012.10.038 %G en %F CRMECA_2012__340_11-12_910_0
Manuel G. Velarde; Werner Ebeling; Alexander P. Chetverikov. Soliton-mediated compression density waves and charge density in 2d layers of underdoped cuprate-like lattices. Comptes Rendus. Mécanique, Out of Equilibrium Dynamics, Volume 340 (2012) no. 11-12, pp. 910-916. doi : 10.1016/j.crme.2012.10.038. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.038/
[1] Solitons in Molecular Systems, Reidel, Dordrecht, 1991 (and references therein)
[2] Hopping transfer and stochastic dynamics of electrons in two-dimensional plasmas, Contrib. Plasma Phys., Volume 51 (2011), pp. 814-829
[3] Soliton-like excitations and solectrons in two-dimensional nonlinear lattices, Eur. Phys. J. B, Volume 80 (2011), pp. 137-145
[4] Localized nonlinear, soliton-like waves in two-dimensional anharmonic lattices, Wave Motion, Volume 48 (2011), pp. 753-760
[5] Properties of nano-scale soliton-like excitations in two-dimensional lattice layers, Physica D, Volume 240 (2011), pp. 1954-1959
[6] Soliton-like dynamical clusters in atomic layers (J.W. Schmelzer; G. Röpke; V.B. Priezzhev, eds.), Nucleation Theory and Applications, JINR Pub., Dubna, 2011, pp. 191-200
[7] M.G. Velarde, W. Ebeling, A.P. Chetverikov, Two-dimensional anharmonic crystal lattices: solitons, solectrons, and electric conduction, in: Proceedings FFP-12, Udine, 2012, in press.
[8] Controlling fast electron transfer at the nano-scale by solitonic excitations along crystallographic axes, Eur. Phys. J. B, Volume 85 (2012), p. 291 (8 pp)
[9] On the oxygen isotope effect and apex anharmonicity in high- cuprates, Z. Phys. B – Condens. Matter, Volume 80 (1990), pp. 193-201
[10] J. Bednorz, K.A. Müller (Eds.), Superconductivity, Springer-Verlag, Berlin, 1990, p. 216.
[11] Possibility of a common origin to ferroelectricity and superconductivity in oxides, Phys. Rev. B, Volume 39 (1989), pp. 207-214
[12] Anharmonicity induced multiphonon processes in high-temperature superconductors, Phys. Rev. B, Volume 44 (1991), pp. 2853-2856
[13] Role of electron–two-phonon interaction in ferroelectrics and oxide superconductors, Ferroelectrics, Volume 128 (1992), pp. 99-104
[14] Evidence for stripe correlations of spins and holes in copper oxide superconductors, Nature, Volume 375 (1995), pp. 561-563
[15] Electron–phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductors, Nature, Volume 440 (2006), pp. 1170-1173
[16] Stripe phases in high-temperature superconductors, PNAS, Volume 96 (1999), pp. 8814-8817
[17] How Cooper pairs vanish approaching the Mott insulator in Bi2Sr2CaCu2O8 + δ, Nature, Volume 454 (2008), pp. 1072-1078
[18] Direct role of structural dynamics in electron–lattice coupling of superconducting cuprates, PNAS, Volume 105 (2008), pp. 20161-20166
[19] High-temperature superconductivity: How the cuprates hid their stripes, Nature, Volume 468 (2010), pp. 643-644
[20] An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates, Science, Volume 315 (2007), pp. 1380-1385
[21] Quantum stripe search, Nature, Volume 440 (2006), pp. 1118-1119
[22] A common thread: The pairing interaction for the unconventional superconductors, Rev. Mod. Phys., Volume 84 (2012), pp. 1383-1417 (and references therein)
[23] Fluctuating CuOCu bond model of high-temperature superconductivity, Nature Phys., Volume 3 (2007), pp. 184-191
[24] Ab initio theory of the pseudogap in cuprate superconductors driven by C4 symmetry breaking, Phys. Rev. B, Volume 83 (2011), p. 144503
[25] Hight-temperature superconductivity: the explanation, Phys. Scr., Volume 83 (2011), p. 038301
Cited by Sources:
Comments - Policy