Comptes Rendus
Large Eddy Simulation of turbulent flames in a Trapped Vortex Combustor (TVC) – A flamelet presumed-pdf closure preserving laminar flame speed
Comptes Rendus. Mécanique, Volume 340 (2012) no. 11-12, pp. 917-932.

Flow and flame dynamics inside a trapped vortex combustor are analyzed from Large Eddy Simulation (LES) results compared against measurements. The Navier–Stokes equations are solved in their fully compressible form over a Cartesian grid resorting to immersed boundaries to account for the complex geometry, composed of an annular flow impacting a set of axisymmetric rods (flame holders) before interacting with a cavity. Various cases are considered, varying the main flow rate, the length of the cavity, injecting secondary-air and also adding a swirling motion. From these cases, three main cavity flow regimes emerge. The modeling of molecular diffusion in LES with presumed probability density function (pdf), as filter of premixed flamelets, is also discussed. It is shown that a dynamic correction to molecular diffusion may be computed from the pdf control parameters to ensure the correct laminar flame speed, whatever the mesh used. Finally, studying the turbulent flame evolution within the cavity in the various cases, suggests that swirling motion is mandatory to favor the global burner stability.

Publié le :
DOI : 10.1016/j.crme.2012.10.039
Mots clés : Turbulent combustion, Large Eddy Simulation, Flamelet modeling
Cindy Merlin 1 ; Pascale Domingo 1 ; Luc Vervisch 1

1 CORIA – CNRS and INSA de Rouen, technopole du Madrillet, BP 8, 76801 Saint-Etienne-du-Rouvray, France
@article{CRMECA_2012__340_11-12_917_0,
     author = {Cindy Merlin and Pascale Domingo and Luc Vervisch},
     title = {Large {Eddy} {Simulation} of turbulent flames in a {Trapped} {Vortex} {Combustor} {(TVC)} {\textendash} {A} flamelet presumed-pdf closure preserving laminar flame speed},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {917--932},
     publisher = {Elsevier},
     volume = {340},
     number = {11-12},
     year = {2012},
     doi = {10.1016/j.crme.2012.10.039},
     language = {en},
}
TY  - JOUR
AU  - Cindy Merlin
AU  - Pascale Domingo
AU  - Luc Vervisch
TI  - Large Eddy Simulation of turbulent flames in a Trapped Vortex Combustor (TVC) – A flamelet presumed-pdf closure preserving laminar flame speed
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 917
EP  - 932
VL  - 340
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crme.2012.10.039
LA  - en
ID  - CRMECA_2012__340_11-12_917_0
ER  - 
%0 Journal Article
%A Cindy Merlin
%A Pascale Domingo
%A Luc Vervisch
%T Large Eddy Simulation of turbulent flames in a Trapped Vortex Combustor (TVC) – A flamelet presumed-pdf closure preserving laminar flame speed
%J Comptes Rendus. Mécanique
%D 2012
%P 917-932
%V 340
%N 11-12
%I Elsevier
%R 10.1016/j.crme.2012.10.039
%G en
%F CRMECA_2012__340_11-12_917_0
Cindy Merlin; Pascale Domingo; Luc Vervisch. Large Eddy Simulation of turbulent flames in a Trapped Vortex Combustor (TVC) – A flamelet presumed-pdf closure preserving laminar flame speed. Comptes Rendus. Mécanique, Volume 340 (2012) no. 11-12, pp. 917-932. doi : 10.1016/j.crme.2012.10.039. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.039/

[1] T.Y.T. Wu Cavity and wake flows, Annu. Rev. Fluid Mech., Volume 4 (1972), pp. 243-284

[2] P.N. Shankar; M.D. Deshpande Fluid mechanics in the driven cavity, Annu. Rev. Fluid Mech., Volume 32 (2000), pp. 93-136

[3] B. Launder; S. Poncet; E. Serre Laminar, transitional and turbulent flows in rotor–stator cavities, Annu. Rev. Fluid Mech., Volume 42 (2010), pp. 229-248

[4] N. Forestier; L. Jacquin; P. Geffroy The mixing layer over a deep cavity at high-subsonic speed, J. Fluid Mech., Volume 475 (2003), pp. 101-145

[5] L. Larchevêque; P. Sagaut; O. Labbé Large-eddy simulation of a subsonic cavity flow including asymmetric three-dimensional effects, J. Fluid Mech., Volume 577 (2007), pp. 105-126

[6] E. Sanminguel-Rojas; J.I. Jiménez-González; P. Bohorquez; G. Pawlak; C. Martinez-Bazán Effect of base cavities on the stability of the wake behind slender blunt-based axisymmetric bodies, Phys. Fluids, Volume 23 (2011) no. 11, p. 114103

[7] B. Farkas; G. Paàl; K.G. Szabó Descriptive analysis of a mode transition of the flow over an open cavity, Phys. Fluids, Volume 24 (2012) no. 2, p. 027102

[8] K.-Y. Hsu, L.P. Goss, D.D. Trump, W.M. Roquemore, Performance of a Trapped-Vortex Combustor, AIAA Paper 0810.

[9] B.H. Little; R.R. Whipkey Locked vortex afterbodies, J. Aircraft, Volume 16 (1979) no. 5, pp. 296-302

[10] R.C. Hendricks; R.C. Ryder; A. Brankovic; D.T. Shouse; W.M. Roquemore; N.-S. Liu Computational parametric study of fuel distribution in an experimental trapped vortex combustor sector rig, Proceedings of ASME TURBO EXPO, vol. 1, ASME, 2004, pp. 81-92

[11] M. Gharib; A. Roshko The effect of flow oscillations on cavity drag, J. Fluid Mech., Volume 177 (1987), pp. 501-530

[12] A. Roshko, K. Koenig, Interaction effects on the drag of bluff bodies in tandem, in: Aerodynamic Drag Mechanisms of Bluff Bodies and Road Vehicles, General Motors Research Laboratories, 1976.

[13] G.J. Sturgess, K.-Y. Hsu, Entrainment of mainstream flow in a Trapped-Vortex Combustor, AIAA Paper 0261.

[14] K.-Y. Hsu; L.P. Goss; W.M. Roquemore Characteristics of a Trapped Vortex Combustor, J. Propulsion Power, Volume 14 (1998) no. 1, pp. 57-65

[15] J. Burguburu, Etude expérimentale de la stabilité dʼune flamme dans une chambre de combustion aéronautique par recirculation de gaz brûlés et par ajout dʼhydrogène, Ph.D. thesis, INSA de Rouen, 2011.

[16] J. Burguburu, G. Cabot, B. Renou, A. Boukhalfa, M. Cazalens, Flame stabilization by hot products gases recirculation in a trapped vortex combustor, in: ASME TURBO EXPO 2012 GT2012, Copenhagen, Denmark, June 11–15, 2012.

[17] W.M. Roquemore, D. Shouse, et al., Trapped vortex combustor concept for gas turbine engines, in: 39th AIAA Aerospace Sciences Meeting & Exhibit, AIAA 2001-0483, 2001, pp. 8–11.

[18] P. Domingo; L. Vervisch; D. Veynante Large-eddy simulation of a lifted methane–air jet flame in a vitiated coflow, Combust. Flame, Volume 152 (2008) no. 3, pp. 415-432

[19] V. Subramanian; P. Domingo; L. Vervisch Large-eddy simulation of forced ignition of an annular bluff-body burner, Combust. Flame, Volume 157 (2010) no. 3, pp. 579-601

[20] G. Lodato; L. Vervisch; P. Domingo A compressible wall-adapting similarity mixed model for large-eddy simulation of the impinging round jet, Phys. Fluids, Volume 21 (2009), p. 035102

[21] F. Ducros; F. Laporte; T. Soulères; V. Guinot; P. Moinat; B. Caruelle High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: Application to compressible flows, J. Comput. Phys., Volume 161 (2000), pp. 114-139

[22] G. Lodato; P. Domingo; L. Vervisch Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows, J. Comput. Phys., Volume 227 (2008) no. 10, pp. 5105-5143

[23] T. Poinsot; S.K. Lele Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., Volume 1 (1992) no. 101, pp. 104-129

[24] A.W. Vreman An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications, Phys. Fluids, Volume 16 (2004) no. 10, p. 3670

[25] P. Sagaut Large Eddy Simulation for Incompressible Flows: An Introduction, Springer-Verlag, Berlin, Heidelberg, 2001

[26] A. Jameson, W. Schmidt, E. Turkel, Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes, AIAA Paper 1259, 1981, p. 1981.

[27] R. Swanson; E. Turkel On central-difference and upwind schemes, J. Comput. Phys., Volume 101 (1992) no. 2, pp. 292-306

[28] S. Tatsumi; L. Martinelli; A. Jameson Flux-limited schemes for the compressible Navier–Stokes equations, AIAA Journal, Volume 33 (1995) no. 2, pp. 252-261

[29] C. Merlin, P. Domingo, L. Vervisch, Immersed boundaries in large eddy simulation of compressible flows, Flow, Turbulence and Combustion, , in press. | DOI

[30] M. Klein; A. Sadiki; J. Janicka A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations, J. Comput. Phys., Volume 186 (2002) no. 2, pp. 652-665

[31] Y. Huang; V. Yang Dynamics and stability of lean-premixed swirl-stabilized combustion, Progress in Energy and Combustion Science, Volume 35 (2009) no. 4, pp. 293-364

[32] C.D. Pierce, P. Moin, Large eddy simulation of a confined coaxial jet with swirl and heat release, in: 29th AIAA Fluid Dynamics Conference, AIAA 98-2892, Albuquerque, NM, June 15–18, 1998.

[33] D. Bradley; P.H. Gaskell; X.J. Gu; M. Lawes; M.J. Scott Premixed turbulent flame instability and no formation in a lean-burn swirl burner, Combust. Flame, Volume 115 (1998) no. 4, pp. 515-538

[34] C. Stone; S. Menon Swirl control of combustion instabilities in a gas turbine combustor, Proc. Combust. Inst., Volume 29 (2002) no. 1, pp. 155-160 | DOI

[35] Y. Sommerer, D. Galley, T. Poinsot, S. Ducruix, S. Veynante, LES of flashback and extinction in a swirled burner, J. Turbulence 5 (1), . | DOI

[36] O. Stein; A. Kempf; J. Janicka LES of the Sydney swirl flame series: An initial investigation of the fluid dynamics, Combust. Sci. Tech., Volume 179 (2007), pp. 173-189

[37] A. Nauert; A. Dreizler Conditional velocity measurements by simultaneously applied laser Doppler velocimetry and planar laser-induced fluorescence in a swirling natural gas/air flame, Z. Phys. Chem., Volume 219 (2005), pp. 635-648

[38] C. Schneider; A. Dreizler; J. Janicka Fluid dynamical analysis of atmospheric reacting and isothermal swirling flows, Flow, Turbulence and Combustion, Volume 74 (2005) no. 1, pp. 103-127

[39] S. Roux; G. Lartigue; T. Poinsot; U. Meier; C. Berat Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulation, Combust. Flame, Volume 141 (2005) no. 1–2, pp. 40-54

[40] M. Freitag; M. Klein DNS of a recirculating swirling flow and vortex breakdown, Flow, Turbulence and Combustion, Volume 1–4 (2005) no. 75, pp. 51-66

[41] W. Meier; P. Weigand; X. Duan; R. Giezendanner-Thoben Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame, Combust. Flame, Volume 150 (2007) no. 1/2, pp. 2-26

[42] J. Galpin; A. Naudin; L. Vervisch; C. Angelberger; O. Colin; P. Domingo Large-eddy simulation of a fuel lean premixed turbulent swirl burner, Combust. Flame, Volume 155 (2008) no. 1/2, pp. 247-266

[43] V. Moureau; P. Domingo; L. Vervisch From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: Filtered laminar flame-pdf modeling, Combust. Flame, Volume 158 (2011) no. 7, pp. 1340-1357

[44] T. Poinsot; D. Veynante Theoretical and Numerical Combustion, R.T. Edwards, Inc., 2005

[45] J.A. van Oijen; F.A. Lammers; L.P.H. de Goey Modeling of complex premixed burner systems by using flamelet-generated manifolds, Combust. Flame, Volume 127 (2001) no. 3, pp. 2124-2134

[46] O. Gicquel; N. Darabiha; D. Thevenin Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proc. Comb. Inst., Volume 28 (2000), pp. 1901-1908

[47] P. Nguyen; L. Vervisch; V. Subramanian; P. Domingo Multidimensional flamelet-generated manifolds for partially premixed combustion, Combust. Flame, Volume 157 (2010) no. 1, pp. 43-61 | DOI

[48] G. Lodier; L. Vervisch; V. Moureau; P. Domingo Composition-space premixed flamelet solution with differential diffusion for in situ flamelet-generated manifolds, Combust. Flame, Volume 158 (2011) no. 10, pp. 2009-2016

[49] J. Galpin, C. Angelberger, A. Naudin, L. Vervisch, Large-eddy simulation of H2–air auto-ignition using tabulated detailed chemistry, J. of Turbulence 9 (13), . | DOI

[50] N. Enjalbert; P. Domingo; L. Vervisch Mixing time-history effects in large eddy simulation of non-premixed turbulent flames: Flow-controlled chemistry tabulation, Combust. Flame, Volume 159 (2012) no. 1, pp. 336-352

[51] O. Colin; F. Ducros; D. Veynante; T. Poinsot A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. Fluids, Volume 12 (2000) no. 7, pp. 1843-1863

[52] G. Lecocq; S. Richard; O. Colin; L. Vervisch Hybrid presumed pdf and flame surface density approach for large-eddy simulation of premixed turbulent combustion, part 1: Formalism and simulations of a quasi-steady burner, Combust. Flame, Volume 158 (2011) no. 6, pp. 1201-1214

[53] G. Lecocq; S. Richard; O. Colin; L. Vervisch Hybrid presumed pdf and flame surface density approach for large-eddy simulation of premixed turbulent combustion, part 2: Early flame development after sparking, Combust. Flame, Volume 158 (2011) no. 6, pp. 1215-1226

[54] G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, V.V. Lissianski, Z. Qin, Tech. Rep., 1999, http://www.me.berkeley.edu/gri-mech/.

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Two recent developments in numerical simulation of premixed and partially premixed turbulent flames

Luc Vervisch; Pascale Domingo

C. R. Méca (2006)


Chemical kinetics modeling and LES combustion model effects on a perfectly premixed burner

Guillaume Albouze; Thierry Poinsot; Laurent Gicquel

C. R. Méca (2009)


Impact of the chemical description on a Large Eddy Simulation of a lean partially premixed swirled flame

Benedetta Franzelli; Eleonore Riber; Bénédicte Cuenot

C. R. Méca (2013)