Comptes Rendus
Large Eddy Simulation of turbulent flames in a Trapped Vortex Combustor (TVC) – A flamelet presumed-pdf closure preserving laminar flame speed
Comptes Rendus. Mécanique, Out of Equilibrium Dynamics, Volume 340 (2012) no. 11-12, pp. 917-932.

Flow and flame dynamics inside a trapped vortex combustor are analyzed from Large Eddy Simulation (LES) results compared against measurements. The Navier–Stokes equations are solved in their fully compressible form over a Cartesian grid resorting to immersed boundaries to account for the complex geometry, composed of an annular flow impacting a set of axisymmetric rods (flame holders) before interacting with a cavity. Various cases are considered, varying the main flow rate, the length of the cavity, injecting secondary-air and also adding a swirling motion. From these cases, three main cavity flow regimes emerge. The modeling of molecular diffusion in LES with presumed probability density function (pdf), as filter of premixed flamelets, is also discussed. It is shown that a dynamic correction to molecular diffusion may be computed from the pdf control parameters to ensure the correct laminar flame speed, whatever the mesh used. Finally, studying the turbulent flame evolution within the cavity in the various cases, suggests that swirling motion is mandatory to favor the global burner stability.

Publié le :
DOI : 10.1016/j.crme.2012.10.039
Mots-clés : Turbulent combustion, Large Eddy Simulation, Flamelet modeling

Cindy Merlin 1 ; Pascale Domingo 1 ; Luc Vervisch 1

1 CORIA – CNRS and INSA de Rouen, technopole du Madrillet, BP 8, 76801 Saint-Etienne-du-Rouvray, France
@article{CRMECA_2012__340_11-12_917_0,
     author = {Cindy Merlin and Pascale Domingo and Luc Vervisch},
     title = {Large {Eddy} {Simulation} of turbulent flames in a {Trapped} {Vortex} {Combustor} {(TVC)} {\textendash} {A} flamelet presumed-pdf closure preserving laminar flame speed},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {917--932},
     publisher = {Elsevier},
     volume = {340},
     number = {11-12},
     year = {2012},
     doi = {10.1016/j.crme.2012.10.039},
     language = {en},
}
TY  - JOUR
AU  - Cindy Merlin
AU  - Pascale Domingo
AU  - Luc Vervisch
TI  - Large Eddy Simulation of turbulent flames in a Trapped Vortex Combustor (TVC) – A flamelet presumed-pdf closure preserving laminar flame speed
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 917
EP  - 932
VL  - 340
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crme.2012.10.039
LA  - en
ID  - CRMECA_2012__340_11-12_917_0
ER  - 
%0 Journal Article
%A Cindy Merlin
%A Pascale Domingo
%A Luc Vervisch
%T Large Eddy Simulation of turbulent flames in a Trapped Vortex Combustor (TVC) – A flamelet presumed-pdf closure preserving laminar flame speed
%J Comptes Rendus. Mécanique
%D 2012
%P 917-932
%V 340
%N 11-12
%I Elsevier
%R 10.1016/j.crme.2012.10.039
%G en
%F CRMECA_2012__340_11-12_917_0
Cindy Merlin; Pascale Domingo; Luc Vervisch. Large Eddy Simulation of turbulent flames in a Trapped Vortex Combustor (TVC) – A flamelet presumed-pdf closure preserving laminar flame speed. Comptes Rendus. Mécanique, Out of Equilibrium Dynamics, Volume 340 (2012) no. 11-12, pp. 917-932. doi : 10.1016/j.crme.2012.10.039. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.039/

[1] T.Y.T. Wu Cavity and wake flows, Annu. Rev. Fluid Mech., Volume 4 (1972), pp. 243-284

[2] P.N. Shankar; M.D. Deshpande Fluid mechanics in the driven cavity, Annu. Rev. Fluid Mech., Volume 32 (2000), pp. 93-136

[3] B. Launder; S. Poncet; E. Serre Laminar, transitional and turbulent flows in rotor–stator cavities, Annu. Rev. Fluid Mech., Volume 42 (2010), pp. 229-248

[4] N. Forestier; L. Jacquin; P. Geffroy The mixing layer over a deep cavity at high-subsonic speed, J. Fluid Mech., Volume 475 (2003), pp. 101-145

[5] L. Larchevêque; P. Sagaut; O. Labbé Large-eddy simulation of a subsonic cavity flow including asymmetric three-dimensional effects, J. Fluid Mech., Volume 577 (2007), pp. 105-126

[6] E. Sanminguel-Rojas; J.I. Jiménez-González; P. Bohorquez; G. Pawlak; C. Martinez-Bazán Effect of base cavities on the stability of the wake behind slender blunt-based axisymmetric bodies, Phys. Fluids, Volume 23 (2011) no. 11, p. 114103

[7] B. Farkas; G. Paàl; K.G. Szabó Descriptive analysis of a mode transition of the flow over an open cavity, Phys. Fluids, Volume 24 (2012) no. 2, p. 027102

[8] K.-Y. Hsu, L.P. Goss, D.D. Trump, W.M. Roquemore, Performance of a Trapped-Vortex Combustor, AIAA Paper 0810.

[9] B.H. Little; R.R. Whipkey Locked vortex afterbodies, J. Aircraft, Volume 16 (1979) no. 5, pp. 296-302

[10] R.C. Hendricks; R.C. Ryder; A. Brankovic; D.T. Shouse; W.M. Roquemore; N.-S. Liu Computational parametric study of fuel distribution in an experimental trapped vortex combustor sector rig, Proceedings of ASME TURBO EXPO, vol. 1, ASME, 2004, pp. 81-92

[11] M. Gharib; A. Roshko The effect of flow oscillations on cavity drag, J. Fluid Mech., Volume 177 (1987), pp. 501-530

[12] A. Roshko, K. Koenig, Interaction effects on the drag of bluff bodies in tandem, in: Aerodynamic Drag Mechanisms of Bluff Bodies and Road Vehicles, General Motors Research Laboratories, 1976.

[13] G.J. Sturgess, K.-Y. Hsu, Entrainment of mainstream flow in a Trapped-Vortex Combustor, AIAA Paper 0261.

[14] K.-Y. Hsu; L.P. Goss; W.M. Roquemore Characteristics of a Trapped Vortex Combustor, J. Propulsion Power, Volume 14 (1998) no. 1, pp. 57-65

[15] J. Burguburu, Etude expérimentale de la stabilité dʼune flamme dans une chambre de combustion aéronautique par recirculation de gaz brûlés et par ajout dʼhydrogène, Ph.D. thesis, INSA de Rouen, 2011.

[16] J. Burguburu, G. Cabot, B. Renou, A. Boukhalfa, M. Cazalens, Flame stabilization by hot products gases recirculation in a trapped vortex combustor, in: ASME TURBO EXPO 2012 GT2012, Copenhagen, Denmark, June 11–15, 2012.

[17] W.M. Roquemore, D. Shouse, et al., Trapped vortex combustor concept for gas turbine engines, in: 39th AIAA Aerospace Sciences Meeting & Exhibit, AIAA 2001-0483, 2001, pp. 8–11.

[18] P. Domingo; L. Vervisch; D. Veynante Large-eddy simulation of a lifted methane–air jet flame in a vitiated coflow, Combust. Flame, Volume 152 (2008) no. 3, pp. 415-432

[19] V. Subramanian; P. Domingo; L. Vervisch Large-eddy simulation of forced ignition of an annular bluff-body burner, Combust. Flame, Volume 157 (2010) no. 3, pp. 579-601

[20] G. Lodato; L. Vervisch; P. Domingo A compressible wall-adapting similarity mixed model for large-eddy simulation of the impinging round jet, Phys. Fluids, Volume 21 (2009), p. 035102

[21] F. Ducros; F. Laporte; T. Soulères; V. Guinot; P. Moinat; B. Caruelle High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: Application to compressible flows, J. Comput. Phys., Volume 161 (2000), pp. 114-139

[22] G. Lodato; P. Domingo; L. Vervisch Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows, J. Comput. Phys., Volume 227 (2008) no. 10, pp. 5105-5143

[23] T. Poinsot; S.K. Lele Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., Volume 1 (1992) no. 101, pp. 104-129

[24] A.W. Vreman An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications, Phys. Fluids, Volume 16 (2004) no. 10, p. 3670

[25] P. Sagaut Large Eddy Simulation for Incompressible Flows: An Introduction, Springer-Verlag, Berlin, Heidelberg, 2001

[26] A. Jameson, W. Schmidt, E. Turkel, Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes, AIAA Paper 1259, 1981, p. 1981.

[27] R. Swanson; E. Turkel On central-difference and upwind schemes, J. Comput. Phys., Volume 101 (1992) no. 2, pp. 292-306

[28] S. Tatsumi; L. Martinelli; A. Jameson Flux-limited schemes for the compressible Navier–Stokes equations, AIAA Journal, Volume 33 (1995) no. 2, pp. 252-261

[29] C. Merlin, P. Domingo, L. Vervisch, Immersed boundaries in large eddy simulation of compressible flows, Flow, Turbulence and Combustion, , in press. | DOI

[30] M. Klein; A. Sadiki; J. Janicka A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations, J. Comput. Phys., Volume 186 (2002) no. 2, pp. 652-665

[31] Y. Huang; V. Yang Dynamics and stability of lean-premixed swirl-stabilized combustion, Progress in Energy and Combustion Science, Volume 35 (2009) no. 4, pp. 293-364

[32] C.D. Pierce, P. Moin, Large eddy simulation of a confined coaxial jet with swirl and heat release, in: 29th AIAA Fluid Dynamics Conference, AIAA 98-2892, Albuquerque, NM, June 15–18, 1998.

[33] D. Bradley; P.H. Gaskell; X.J. Gu; M. Lawes; M.J. Scott Premixed turbulent flame instability and no formation in a lean-burn swirl burner, Combust. Flame, Volume 115 (1998) no. 4, pp. 515-538

[34] C. Stone; S. Menon Swirl control of combustion instabilities in a gas turbine combustor, Proc. Combust. Inst., Volume 29 (2002) no. 1, pp. 155-160 | DOI

[35] Y. Sommerer, D. Galley, T. Poinsot, S. Ducruix, S. Veynante, LES of flashback and extinction in a swirled burner, J. Turbulence 5 (1), . | DOI

[36] O. Stein; A. Kempf; J. Janicka LES of the Sydney swirl flame series: An initial investigation of the fluid dynamics, Combust. Sci. Tech., Volume 179 (2007), pp. 173-189

[37] A. Nauert; A. Dreizler Conditional velocity measurements by simultaneously applied laser Doppler velocimetry and planar laser-induced fluorescence in a swirling natural gas/air flame, Z. Phys. Chem., Volume 219 (2005), pp. 635-648

[38] C. Schneider; A. Dreizler; J. Janicka Fluid dynamical analysis of atmospheric reacting and isothermal swirling flows, Flow, Turbulence and Combustion, Volume 74 (2005) no. 1, pp. 103-127

[39] S. Roux; G. Lartigue; T. Poinsot; U. Meier; C. Berat Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulation, Combust. Flame, Volume 141 (2005) no. 1–2, pp. 40-54

[40] M. Freitag; M. Klein DNS of a recirculating swirling flow and vortex breakdown, Flow, Turbulence and Combustion, Volume 1–4 (2005) no. 75, pp. 51-66

[41] W. Meier; P. Weigand; X. Duan; R. Giezendanner-Thoben Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame, Combust. Flame, Volume 150 (2007) no. 1/2, pp. 2-26

[42] J. Galpin; A. Naudin; L. Vervisch; C. Angelberger; O. Colin; P. Domingo Large-eddy simulation of a fuel lean premixed turbulent swirl burner, Combust. Flame, Volume 155 (2008) no. 1/2, pp. 247-266

[43] V. Moureau; P. Domingo; L. Vervisch From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: Filtered laminar flame-pdf modeling, Combust. Flame, Volume 158 (2011) no. 7, pp. 1340-1357

[44] T. Poinsot; D. Veynante Theoretical and Numerical Combustion, R.T. Edwards, Inc., 2005

[45] J.A. van Oijen; F.A. Lammers; L.P.H. de Goey Modeling of complex premixed burner systems by using flamelet-generated manifolds, Combust. Flame, Volume 127 (2001) no. 3, pp. 2124-2134

[46] O. Gicquel; N. Darabiha; D. Thevenin Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proc. Comb. Inst., Volume 28 (2000), pp. 1901-1908

[47] P. Nguyen; L. Vervisch; V. Subramanian; P. Domingo Multidimensional flamelet-generated manifolds for partially premixed combustion, Combust. Flame, Volume 157 (2010) no. 1, pp. 43-61 | DOI

[48] G. Lodier; L. Vervisch; V. Moureau; P. Domingo Composition-space premixed flamelet solution with differential diffusion for in situ flamelet-generated manifolds, Combust. Flame, Volume 158 (2011) no. 10, pp. 2009-2016

[49] J. Galpin, C. Angelberger, A. Naudin, L. Vervisch, Large-eddy simulation of H2–air auto-ignition using tabulated detailed chemistry, J. of Turbulence 9 (13), . | DOI

[50] N. Enjalbert; P. Domingo; L. Vervisch Mixing time-history effects in large eddy simulation of non-premixed turbulent flames: Flow-controlled chemistry tabulation, Combust. Flame, Volume 159 (2012) no. 1, pp. 336-352

[51] O. Colin; F. Ducros; D. Veynante; T. Poinsot A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. Fluids, Volume 12 (2000) no. 7, pp. 1843-1863

[52] G. Lecocq; S. Richard; O. Colin; L. Vervisch Hybrid presumed pdf and flame surface density approach for large-eddy simulation of premixed turbulent combustion, part 1: Formalism and simulations of a quasi-steady burner, Combust. Flame, Volume 158 (2011) no. 6, pp. 1201-1214

[53] G. Lecocq; S. Richard; O. Colin; L. Vervisch Hybrid presumed pdf and flame surface density approach for large-eddy simulation of premixed turbulent combustion, part 2: Early flame development after sparking, Combust. Flame, Volume 158 (2011) no. 6, pp. 1215-1226

[54] G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, V.V. Lissianski, Z. Qin, Tech. Rep., 1999, http://www.me.berkeley.edu/gri-mech/.

  • Jiadong Zhang; Mingyu Li; Bei Yu; Shuqi Li; Yuling Zhao Effect of air injection mode on the performance of a novel vortex-controlled flameholder for aircraft engine, Applied Thermal Engineering, Volume 262 (2025), p. 125245 | DOI:10.1016/j.applthermaleng.2024.125245
  • Yuling Zhao; Mingyu Li; Cheng Gong Effect of mainstream-forced-entrainment control strategy on the combustion performance of a cavity-based combustor, Fuel, Volume 380 (2025), p. 133265 | DOI:10.1016/j.fuel.2024.133265
  • Yuling Zhao; Mingyu Li; Tiancheng Zhou; Wei Shang; Zhenghao Ge Experimental and numerical study on a cavity-swirler-based combustion strategy for advanced gas turbine engine, Applied Thermal Engineering, Volume 241 (2024), p. 122470 | DOI:10.1016/j.applthermaleng.2024.122470
  • Reza Sharifzadeh; Asghar Afshari Assessment of a hydrogen-fueled swirling trapped-vortex combustor using large-eddy simulation, Fuel, Volume 357 (2024), p. 129847 | DOI:10.1016/j.fuel.2023.129847
  • Yuling Zhao; Cheng Gong; Mingyu Li Effect of air-injection mode on mainstream-forced entrainment and combustion characteristics of a cavity-based combustor, Physics of Fluids, Volume 36 (2024) no. 8 | DOI:10.1063/5.0222196
  • Wenbo Yu; Chen Yue; Yuxin Fan; Yu Deng Influence of strut on trapped vortex cavity flameholder: Ignition and flame propagation performances, Acta Astronautica, Volume 204 (2023), p. 132 | DOI:10.1016/j.actaastro.2022.12.020
  • Yuxuan Zhang; Xiaomin He; Shilin Zhong; Yuanhao Deng; Jintao Wang; Fei Zhang Influence of incoming flow parameters on the flow field in a trapped vortex cavity with radial bluff-body, Aerospace Science and Technology, Volume 132 (2023), p. 108050 | DOI:10.1016/j.ast.2022.108050
  • Mingyu Li; Qian Wang; Yuling Zhao; Xuan Dai; Wei Shang Combustion and emission characteristics of a novel staged combustor for aero gas turbine engine, Aerospace Science and Technology, Volume 134 (2023), p. 108169 | DOI:10.1016/j.ast.2023.108169
  • Kai Zhang; Yi Jin; Kanghong Yao; Yunbiao Wang; Wenlei Lian Effects of swirling motion on the cavity flow field and combustion performance, Aerospace Science and Technology, Volume 138 (2023), p. 108275 | DOI:10.1016/j.ast.2023.108275
  • Qian Wang; Mingyu Li; Xiaomin He Effect of a passive control strategy on lean ignition and blowout performance of a gas turbine combustor, Applied Thermal Engineering, Volume 219 (2023), p. 119386 | DOI:10.1016/j.applthermaleng.2022.119386
  • Qian Wang; Mingyu Li; Yuling Zhao; Jiankun Xiao Combustion and emission performance of a trapped-vortex gas turbine combustor fueled by RP-3 kerosene, Fuel, Volume 343 (2023), p. 127929 | DOI:10.1016/j.fuel.2023.127929
  • Yakun Huang; Zhaohui Yao; Zhixin Zhu; Xiaomin He Effect of Inlet Pressure on Flow Characteristics in Cavity-Based Flameholder under Subatmospheric Pressure, Journal of Thermal Science, Volume 32 (2023) no. 1, p. 278 | DOI:10.1007/s11630-022-1717-3
  • Yuxuan Zhang; Xiaomin He Pilot Combustion Characteristics of RP-3 Kerosene in a Trapped-Vortex Cavity with Radial Bluff-Body Flameholder, Journal of Thermal Science, Volume 32 (2023) no. 1, p. 468 | DOI:10.1007/s11630-022-1746-y
  • Wu He; Yuling Zhao; Weijun Fan Spray, flowfield, and combustion characteristics of an external mixing atomizer in a novel cavity-swirler-based combustor, Physics of Fluids, Volume 35 (2023) no. 12 | DOI:10.1063/5.0184223
  • Nisanth M. S.; Pratikash Panda; Ravikrishna R. V., AIAA SCITECH 2022 Forum (2022) | DOI:10.2514/6.2022-0488
  • Yuxi Guo; Xiaomin He; Cheng Gong; Qiufeng Zhang; Yichao Ma; Tao Gui Performance of a novel swirling-flow single trapped vortex combustor, Aerospace Science and Technology, Volume 127 (2022), p. 107674 | DOI:10.1016/j.ast.2022.107674
  • Reza Sharifzadeh; Asghar Afshari Large eddy simulation of swirling flows in a non-reacting trapped-vortex combustor, Aerospace Science and Technology, Volume 127 (2022), p. 107711 | DOI:10.1016/j.ast.2022.107711
  • Mingyu Li; Qian Wang; Xiaomin He; Jiankun Xiao; Heng Ma Effects of fuel injection on the combustion and emission performance of a trapped vortex combustor, Energy, Volume 252 (2022), p. 123955 | DOI:10.1016/j.energy.2022.123955
  • Zhixin Zhu; Yakun Huang; Huangwei Zhang; Xiaomin He Combustion performance in a cavity-based combustor under subatmospheric pressure, Fuel, Volume 302 (2021), p. 121115 | DOI:10.1016/j.fuel.2021.121115
  • Yuling Zhao; Xiaomin He; Jiankun Xiao; Mingyu Li Effect of cavity-air injection mode on the performance of a trapped vortex combustor, Aerospace Science and Technology, Volume 106 (2020), p. 106183 | DOI:10.1016/j.ast.2020.106183
  • Yuling Zhao; Xiaomin He; Mingyu Li Effect of mainstream forced entrainment on the combustion performance of a gas turbine combustor, Applied Energy, Volume 279 (2020), p. 115824 | DOI:10.1016/j.apenergy.2020.115824
  • Mingyu Li; Xiaomin He; Yuling Zhao; Yi Jin; Zhenghao Ge; Weidong Huang Effect of strut length on combustion performance of a trapped vortex combustor, Aerospace Science and Technology, Volume 76 (2018), p. 204 | DOI:10.1016/j.ast.2018.02.019
  • Mingyu Li; Xiaomin He; Yuling Zhao; Yi Jin; Kanghong Yao; Zhenghao Ge Performance enhancement of a trapped-vortex combustor for gas turbine engines using a novel hybrid-atomizer, Applied Energy, Volume 216 (2018), p. 286 | DOI:10.1016/j.apenergy.2018.02.111
  • Song Chen; Dan Zhao Numerical study of guide vane effects on reacting flow characteristics in a trapped vortex combustor, Combustion Science and Technology, Volume 190 (2018) no. 12, p. 2111 | DOI:10.1080/00102202.2018.1492568
  • Dan Zhao; Ephraim Gutmark; Philip de Goey A review of cavity-based trapped vortex, ultra-compact, high-g, inter-turbine combustors, Progress in Energy and Combustion Science, Volume 66 (2018), p. 42 | DOI:10.1016/j.pecs.2017.12.001
  • Mingyu Li; Xiaomin He; Yuling Zhao; Yi Jin; Zhenghao Ge; Yuan Sun Dome structure effects on combustion performance of a trapped vortex combustor, Applied Energy, Volume 208 (2017), p. 72 | DOI:10.1016/j.apenergy.2017.10.029
  • Pascale Domingo; Luc Vervisch DNS and approximate deconvolution as a tool to analyse one-dimensional filtered flame sub-grid scale modelling, Combustion and Flame, Volume 177 (2017), p. 109 | DOI:10.1016/j.combustflame.2016.12.008
  • Hongda Zhang; Taohong Ye; Gaofeng Wang; Peng Tang; Minghou Liu Large Eddy Simulation of Turbulent Premixed Swirling Flames Using Dynamic Thickened Flame with Tabulated Detailed Chemistry, Flow, Turbulence and Combustion, Volume 98 (2017) no. 3, p. 841 | DOI:10.1007/s10494-016-9791-9
  • Sina Davazdah Emami; Rafiziana Md. Kasmani; Zahra Naserzadeh; Che Rosmani Che Hassan; Mahar Diana Hamid Experimental study on the flame acceleration of premixed hydrocarbons-hydrogen/air mixtures in tee pipes, Journal of Loss Prevention in the Process Industries, Volume 45 (2017), p. 229 | DOI:10.1016/j.jlp.2017.01.005
  • Sina Davazdah Emami; Siti Zubaidah Sulaiman; Rafiziana Md. Kasmani; Mahar Diana Hamid; Che Rosmani Che Hassan Effect of pipe configurations on flame propagation of hydrocarbons–air and hydrogen–air mixtures in a constant volume, Journal of Loss Prevention in the Process Industries, Volume 39 (2016), p. 141 | DOI:10.1016/j.jlp.2015.11.005
  • Zejun Wu; Yi Jin; Xiaomin He; Chong Xue; Liang Hong Experimental and numerical studies on a trapped vortex combustor with different struts width, Applied Thermal Engineering, Volume 91 (2015), p. 91 | DOI:10.1016/j.applthermaleng.2015.06.068
  • Zejun Wu; Xiaomin He; Bo Jiang; Yi Jin Experimental investigation on a single-cavity trapped vortex combustor, International Communications in Heat and Mass Transfer, Volume 68 (2015), p. 8 | DOI:10.1016/j.icheatmasstransfer.2015.08.003
  • Pascale Domingo; Luc Vervisch Large Eddy Simulation of premixed turbulent combustion using approximate deconvolution and explicit flame filtering, Proceedings of the Combustion Institute, Volume 35 (2015) no. 2, p. 1349 | DOI:10.1016/j.proci.2014.05.146
  • Yi Jin; Xiaomin He; Bo Jiang; Zejun Wu; Guoyu Ding; Zhixin Zhu Effect of cavity-injector/radial-strut relative position on performance of a trapped vortex combustor, Aerospace Science and Technology, Volume 32 (2014) no. 1, p. 10 | DOI:10.1016/j.ast.2013.12.014

Cité par 34 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: