Comptes Rendus
On the fractional generalization of Eringenʼs nonlocal elasticity for wave propagation
Comptes Rendus. Mécanique, Volume 341 (2013) no. 3, pp. 298-303.

A fractional nonlocal elasticity model is presented in this Note. This model can be understood as a possible generalization of Eringenʼs nonlocal elastic model, with a free non-integer derivative in the stress–strain fractional order differential equation. This model only contains a single length scale and the fractional derivative order as parameters. The kernel of this integral-based nonlocal model is explicitly given for various fractional derivative orders. The dynamical properties of this new model are investigated for a one-dimensional problem. It is possible to obtain an analytical dispersive equation for the axial wave problem, which is parameterized by the fractional derivative order. The fractional derivative order of this generalized fractional Eringenʼs law is then calibrated with the dispersive wave properties of the Born–Kármán model of lattice dynamics and appears to be greater than the one of the usual Eringenʼs model. An excellent matching of the dispersive curve of the Born–Kármán model of lattice dynamics is obtained with such generalized integral-based nonlocal model.

Published online:
DOI: 10.1016/j.crme.2012.11.013
Keywords: Waves, Wave propagation, Scale effects, Nanostructures, Nonlocal elasticity, Eringen model, Fractional derivative, Heterogeneous material, Dispersive properties, Born–Kármán model

Noël Challamel 1; Dušan Zorica 2; Teodor M. Atanacković 3; Dragan T. Spasić 3

1 Université européenne de Bretagne, University of South Brittany UBS, UBS – LIMATB, centre de recherche, rue de Saint Maude, BP92116, 56321 Lorient cedex, France
2 Mathematical Institute, Serbian Academy of Arts and Sciences, Kneza Mihaila 36, 11000 Beograd, Serbia
3 Department of Mechanics, Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad, Serbia
     author = {No\"el Challamel and Du\v{s}an Zorica and Teodor M. Atanackovi\'c and Dragan T. Spasi\'c},
     title = {On the fractional generalization of {Eringen's} nonlocal elasticity for wave propagation},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {298--303},
     publisher = {Elsevier},
     volume = {341},
     number = {3},
     year = {2013},
     doi = {10.1016/j.crme.2012.11.013},
     language = {en},
AU  - Noël Challamel
AU  - Dušan Zorica
AU  - Teodor M. Atanacković
AU  - Dragan T. Spasić
TI  - On the fractional generalization of Eringenʼs nonlocal elasticity for wave propagation
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 298
EP  - 303
VL  - 341
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2012.11.013
LA  - en
ID  - CRMECA_2013__341_3_298_0
ER  - 
%0 Journal Article
%A Noël Challamel
%A Dušan Zorica
%A Teodor M. Atanacković
%A Dragan T. Spasić
%T On the fractional generalization of Eringenʼs nonlocal elasticity for wave propagation
%J Comptes Rendus. Mécanique
%D 2013
%P 298-303
%V 341
%N 3
%I Elsevier
%R 10.1016/j.crme.2012.11.013
%G en
%F CRMECA_2013__341_3_298_0
Noël Challamel; Dušan Zorica; Teodor M. Atanacković; Dragan T. Spasić. On the fractional generalization of Eringenʼs nonlocal elasticity for wave propagation. Comptes Rendus. Mécanique, Volume 341 (2013) no. 3, pp. 298-303. doi : 10.1016/j.crme.2012.11.013.

[1] G.A. Maugin Nonlinear Waves in Elastic Crystals, Oxford University Press, 1999

[2] I. Elishakoff; D. Pentaras; K. Dujat; C. Versaci; G. Muscolino; J. Storch; S. Bucas; N. Challamel; T. Natsuki; Y.Y. Zhang; C.M. Wang; G. Ghyselinck Carbon Nanotubes and Nanosensors: Vibrations, Buckling and Ballistic Impact, Wiley–ISTE, 2012

[3] A.C. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., Volume 54 (1983), pp. 4703-4710

[4] M. Born; T. von Kármán On fluctuations in spatial grids, Phys. Z., Volume 13 (1912), pp. 297-309

[5] A.C. Eringen Theory of nonlocal elasticity and some applications, Res. Mech., Volume 21 (1987), pp. 313-342

[6] A.C. Eringen Nonlocal Continuum Field Theories, Springer, New York, 2002

[7] K.A. Lazopoulos Non-local continuum mechanics and fractional calculus, Mech. Res. Comm., Volume 33 (2006), pp. 753-757

[8] G. Cottone; M. Di Paola; M. Zingales Elastic waves propagation in 1D fractional non-local continuum, Physica E, Volume 42 (2009), pp. 95-103

[9] T.M. Atanacković; B. Stanković Generalized wave equation in nonlocal elasticity, Acta Mech., Volume 208 (2009), pp. 1-10

[10] A. Carpinteri; P. Cornetti; A. Sapora A fractional calculus approach to nonlocal elasticity, Eur. Phys. J. Spec. Top., Volume 193 (2011), pp. 193-204

[11] T.M. Michelitsch The self-similar field and its application to a diffusion problem, J. Phys. A: Math. Theor., Volume 44 (2011), p. 465206

[12] T.M. Michelitsch; G.A. Maugin; M. Rahman; S. Derogar; A.F. Nowakowski; F.C.G.A. Nicolleau An approach to generalized one-dimensional self-similar elasticity, Int. J. Eng. Sci., Volume 61 (2012), pp. 103-111

[13] G. Samko; A.A. Kilbas; O.I. Marichev Fractional Integrals and Derivatives, Gordon and Breach, Amsterdam, 1993 (p. 109)

[14] A.A. Kilbas; H.M. Srivastava; J.J. Trujillo Theory and Applications of Fractional Differential Equations, Elsevier B.V., Amsterdam, 2006 (p. 90)

[15] N. Challamel; L. Rakotomanana; L. Le Marrec A dispersive wave equation using non-local elasticity, C. R. Mecanique, Volume 337 (2009), pp. 591-595

Cited by Sources:

Comments - Policy