In this Note, we propose a new methodology based on exploratory data mining techniques to evaluate the errors due to the description of a given real system. First, we decompose this description error into four types of sources. Then, we construct databases of the entire information produced by different numerical approximation methods, to assess and compare the significant differences between these methods, using techniques like decision trees, Kohonenʼs cards, or neural networks. As an example, we characterize specific states of the real system for which we can locally appreciate the accuracy between two kinds of finite elements methods. In this case, this allowed us to precise the classical Bramble–Hilbert theorem that gives a global error estimate, whereas our approach gives a local error estimate.
Dans cette Note, on propose une nouvelle méthodologie fondée sur les techniques exploratoires du data mining afin dʼévaluer les erreurs suscitées par la description dʼun système physique donné. Pour ce faire, on identifie quatre type de sources dʼerreurs. On constitue alors une base de données regroupant lʼensemble des résultats numériques calculés par différentes méthodes dʼapproximation, afin dʼen comparer les différences significatives, par des techniques telles que les arbres de décision, les cartes de Kohonen, ou encore les réseaux de neurones. À titre dʼexemple, nous caractérisons des états spécifiques du système réel pour lesquels on peut localement estimer la différence de précision entre deux méthodes dʼéléments finis. Il est ainsi possible de préciser les résultats classiques du théorème de Bramble–Hilbert qui procure une estimation globale, alors que notre méthode propose une caractérisation locale des méthodes dʼapproximation considérées.
Accepted:
Published online:
Mots-clés : Data mining, Estimation dʼerreur, Équations de Vlasov–Maxwell, Analyse asymptotique, Modèle paraxial
Franck Assous 1; Joël Chaskalovic 2
@article{CRMECA_2013__341_3_304_0, author = {Franck Assous and Jo\"el Chaskalovic}, title = {Error estimate evaluation in numerical approximations of partial differential equations: {A} pilot study using data mining methods}, journal = {Comptes Rendus. M\'ecanique}, pages = {304--313}, publisher = {Elsevier}, volume = {341}, number = {3}, year = {2013}, doi = {10.1016/j.crme.2013.01.002}, language = {en}, }
TY - JOUR AU - Franck Assous AU - Joël Chaskalovic TI - Error estimate evaluation in numerical approximations of partial differential equations: A pilot study using data mining methods JO - Comptes Rendus. Mécanique PY - 2013 SP - 304 EP - 313 VL - 341 IS - 3 PB - Elsevier DO - 10.1016/j.crme.2013.01.002 LA - en ID - CRMECA_2013__341_3_304_0 ER -
%0 Journal Article %A Franck Assous %A Joël Chaskalovic %T Error estimate evaluation in numerical approximations of partial differential equations: A pilot study using data mining methods %J Comptes Rendus. Mécanique %D 2013 %P 304-313 %V 341 %N 3 %I Elsevier %R 10.1016/j.crme.2013.01.002 %G en %F CRMECA_2013__341_3_304_0
Franck Assous; Joël Chaskalovic. Error estimate evaluation in numerical approximations of partial differential equations: A pilot study using data mining methods. Comptes Rendus. Mécanique, Volume 341 (2013) no. 3, pp. 304-313. doi : 10.1016/j.crme.2013.01.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.01.002/
[1] Data mining techniques for scientific computing: Application to asymptotic paraxial approximations to model ultra-relativistic particles, J. Comput. Phys., Volume 230 (2011), pp. 4811-4827
[2] Mathematical and Numerical Methods for Partial Differential Equations, Springer-Verlag, 2013
[3] Dimensional Analysis for Engineers, Clarendon Press, Oxford, 1974
[4] Data Mining – Gestion de la relation client, Eyrolles, 2001
[5] Paraxial approximation of ultrarelativistic intense beams, Numer. Math., Volume 69 (1994) no. 1, pp. 33-60
[6] Plasmas Physics via Computer Simulation, McGraw–Hill, New York, 1985
[7] The ARCTIC charged particle beam propagation code, J. Comput. Phys., Volume 128 (1996) no. 2, pp. 489-497
[8] S. Slinker, G. Joyce, J. Krall, R.F. Hubbard, ELBA – A three dimensional particle simulation code for high current beams, in: Proc. of the 14th Inter. Conf. Numer. Simul. Plasmas, Annapolis, 1991.
[9] On the paraxial approximation of the stationary Vlasov–Maxwell, Math. Models Methods Appl. Sci., Volume 3 (1993) no. 4, pp. 513-562
[10] A hierarchy of approximate models for the Maxwell equations, Numer. Math., Volume 73 (1996) no. 3, pp. 329-372
[11] Numerical paraxial approximation for highly relativistic beams, Comput. Phys. Commun., Volume 180 (2009), pp. 1086-1097
[12] F. Assous, J. Chaskalovic, On the error estimate evaluation in PDEʼs by data mining techniques, 2012, in preparation.
[13] http://www.freefem.org/ff++/ (FreeFem++, Numerical Mathematics and Scientific Computation 3.7, Laboratoire J.L. Lions, Université Pierre et Marie Curie)
, 2010[14] Data Mining with Decision Trees: Theory and Applications, World Scientific Publishing Company, 2001
[15] J. Chaskalovic, A new approach in Media/Marketing Databases explorations for application in E-business, in: National Congress of IREP, Paris, 1999.
[16] J. Chaskalovic, A. Vanheuverzwyn, Innovation in estimations: A reliable approach for radio audience indicators, in: Proc. Esomar, WM3 2007, Dublin, 3–6 June 2007.
[17] et al. Insomnia symptoms and CPAP compliance in OSAS patients: A descriptive study using Data Mining methods, Sleep Med., Volume 11 (2010) no. 8, pp. 777-784
[18] O. Kulski, J. Chaskalovic, et al., Explicative factors for prognostics IIU: exploration on 2089 cycles done with statistical and data mining tools, in: 9th Meeting of the French Federation of the Reproduction Studies, Palais des Congrés, Paris, 2004.
Cited by Sources:
Comments - Policy