A mathematical model for thin viscoelastic Kelvin–Voigt plates is derived through an asymptotic analysis when the thickness goes to zero. The model involves Kirchhoff–Love kinematics, but the mechanical behavior is no longer of Kelvin–Voigt type: an additional term of delayed memory appears like in homogenization.
On propose un modèle mathématique pour les plaques minces viscoélastiques linéaires de Kelvin–Voigt par une étude asymptotique lorsque lʼépaisseur tend vers zéro. Le modèle met en jeu une cinématique de Kirchhoff–Love, mais le comportement nʼest plus de type Kelvin–Voigt : comme en homogénéisation, un terme additionnel de mémoire longue apparaît.
Accepted:
Published online:
Mot clés : Analyse asymptotique, Plaques minces viscoélastiques, Déplacements de Kirchhoff–Love, Viscoélasticité de Kelvin–Voigt, Viscoélasticité à mémoire
Christian Licht 1, 2
@article{CRMECA_2013__341_9-10_697_0, author = {Christian Licht}, title = {Thin linearly viscoelastic {Kelvin{\textendash}Voigt} plates}, journal = {Comptes Rendus. M\'ecanique}, pages = {697--700}, publisher = {Elsevier}, volume = {341}, number = {9-10}, year = {2013}, doi = {10.1016/j.crme.2013.06.005}, language = {en}, }
Christian Licht. Thin linearly viscoelastic Kelvin–Voigt plates. Comptes Rendus. Mécanique, Volume 341 (2013) no. 9-10, pp. 697-700. doi : 10.1016/j.crme.2013.06.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.06.005/
[1] Mathematical Elasticity, vol. II, North Holland, 1997
[2] Homogenization and mechanical dissipation in thermoviscoelasticity, Arch. Ration. Mech. Anal., Volume 96 (1986) no. 3, pp. 265-293
[3] Nonlinear boundary conditions in Kirchhoff–Love plate theory, J. Elast., Volume 96 (2009) no. 1, pp. 57-79
[4] Non Homogeneous Media and Vibration Theory, Lect. Notes Phys., vol. 127, Springer-Verlag, 1980
[5] Modeling, Analysis and Controlability of Thin Plates, Masson, Paris, 1988
[6] Derivation of plate models from three-dimensional viscoelasticity, Z. Angew. Math. Mech., Volume 80 (2000) no. Issue supplement S2, pp. 391-392
[7] A. Lofti, Derivation of plate models from three-dimensional viscoelasticity, HU ISSN 1418-7108: HEJ Manuscript No: ANM-04031-A.
Cited by Sources:
Comments - Policy