Comptes Rendus
Thin linearly viscoelastic Kelvin–Voigt plates
Comptes Rendus. Mécanique, Volume 341 (2013) no. 9-10, pp. 697-700.

A mathematical model for thin viscoelastic Kelvin–Voigt plates is derived through an asymptotic analysis when the thickness goes to zero. The model involves Kirchhoff–Love kinematics, but the mechanical behavior is no longer of Kelvin–Voigt type: an additional term of delayed memory appears like in homogenization.

On propose un modèle mathématique pour les plaques minces viscoélastiques linéaires de Kelvin–Voigt par une étude asymptotique lorsque lʼépaisseur tend vers zéro. Le modèle met en jeu une cinématique de Kirchhoff–Love, mais le comportement nʼest plus de type Kelvin–Voigt : comme en homogénéisation, un terme additionnel de mémoire longue apparaît.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2013.06.005
Keywords: Asymptotic modeling, Thin viscoelastic plates, Kirchhoff–Love kinematics, Kelvin–Voigt viscoelasticity, Viscoelasticity with fading memory
Mot clés : Analyse asymptotique, Plaques minces viscoélastiques, Déplacements de Kirchhoff–Love, Viscoélasticité de Kelvin–Voigt, Viscoélasticité à mémoire

Christian Licht 1, 2

1 Laboratoire de mécanique et génie civil, UMR 5508 CNRS – UMII, université Montpellier-2, c.c. 048, place Eugène-Bataillon, 34095 Montpellier cedex 5, France
2 Department of Mathematics, Mahidol University, Rama VI road, Bangkok 10400, Thailand
@article{CRMECA_2013__341_9-10_697_0,
     author = {Christian Licht},
     title = {Thin linearly viscoelastic {Kelvin{\textendash}Voigt} plates},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {697--700},
     publisher = {Elsevier},
     volume = {341},
     number = {9-10},
     year = {2013},
     doi = {10.1016/j.crme.2013.06.005},
     language = {en},
}
TY  - JOUR
AU  - Christian Licht
TI  - Thin linearly viscoelastic Kelvin–Voigt plates
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 697
EP  - 700
VL  - 341
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crme.2013.06.005
LA  - en
ID  - CRMECA_2013__341_9-10_697_0
ER  - 
%0 Journal Article
%A Christian Licht
%T Thin linearly viscoelastic Kelvin–Voigt plates
%J Comptes Rendus. Mécanique
%D 2013
%P 697-700
%V 341
%N 9-10
%I Elsevier
%R 10.1016/j.crme.2013.06.005
%G en
%F CRMECA_2013__341_9-10_697_0
Christian Licht. Thin linearly viscoelastic Kelvin–Voigt plates. Comptes Rendus. Mécanique, Volume 341 (2013) no. 9-10, pp. 697-700. doi : 10.1016/j.crme.2013.06.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.06.005/

[1] P.G. Ciarlet Mathematical Elasticity, vol. II, North Holland, 1997

[2] G. Francfort; P. Suquet Homogenization and mechanical dissipation in thermoviscoelasticity, Arch. Ration. Mech. Anal., Volume 96 (1986) no. 3, pp. 265-293

[3] O. Iosifescu; C. Licht; G. Michaille Nonlinear boundary conditions in Kirchhoff–Love plate theory, J. Elast., Volume 96 (2009) no. 1, pp. 57-79

[4] E. Sanchez-Palencia Non Homogeneous Media and Vibration Theory, Lect. Notes Phys., vol. 127, Springer-Verlag, 1980

[5] J. Lagnese; J.-L. Lions Modeling, Analysis and Controlability of Thin Plates, Masson, Paris, 1988

[6] A. Lofti; G. Molnarka Derivation of plate models from three-dimensional viscoelasticity, Z. Angew. Math. Mech., Volume 80 (2000) no. Issue supplement S2, pp. 391-392

[7] A. Lofti, Derivation of plate models from three-dimensional viscoelasticity, HU ISSN 1418-7108: HEJ Manuscript No: ANM-04031-A.

Cited by Sources:

Comments - Policy