In this study, the vibrations of a coil, excited axially, in helical compression springs such as tamping rammers are discussed. The mathematical formulation is comprised of a system of four partial differential equations of first-order hyperbolic type, as the unknown variables are angular and axial deformations and velocities. The numerical resolution is performed by the conservative finite difference scheme of Lax–Wendroff. The impedance method is applied to calculate the frequency spectrum. The results obtained with this method were used to analyze the evolution in time of deformations and velocities in different sections of the spring resulting from a sinusoidal excitation of the axial velocity applied at the end of the spring. These results clearly show the effect of the interaction between the slow axial waves and the fast angular waves, the resonance and other phenomena related to wave propagations such as wave reflections and beat.
Accepted:
Published online:
Anis Hamza 1; Sami Ayadi 1; Ezzeddine Hadj-Taïeb 1
@article{CRMECA_2013__341_9-10_672_0, author = {Anis Hamza and Sami Ayadi and Ezzeddine Hadj-Ta{\"\i}eb}, title = {The natural frequencies of waves in helical springs}, journal = {Comptes Rendus. M\'ecanique}, pages = {672--686}, publisher = {Elsevier}, volume = {341}, number = {9-10}, year = {2013}, doi = {10.1016/j.crme.2013.09.006}, language = {en}, }
Anis Hamza; Sami Ayadi; Ezzeddine Hadj-Taïeb. The natural frequencies of waves in helical springs. Comptes Rendus. Mécanique, Volume 341 (2013) no. 9-10, pp. 672-686. doi : 10.1016/j.crme.2013.09.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.09.006/
[1] Mechanical Springs, Penton Publishing Co., Cleveland, Ohio, 1963
[2] On elastic wave propagation in helical springs, Int. J. Mech. Sci., Volume 8 (1966), pp. 25-47
[3] A Treatise on the Mathematical Theory of Elasticity, Dover Publications, New York, 1927
[4] Finite element method for the stress analysis of isotropic cylindrical helical spring, Eur. J. Mech. A, Solids, Volume 24 (2005) no. 12, pp. 1068-1078
[5] On the dynamical properties of helical springs of finite length with small pitch, J. Sound Vib., Volume 8 (1968) no. 1, pp. 1-15
[6] Ressorts soumis à une force coaxiale, Tech. Ing., Volume BD3 B 5435 (1986), pp. 1-23
[7] On the dynamic radial expansion of helical springs due to longitudinal impact, J. Sound Vib., Volume 35 (1974), p. 77
[8] Comportement dynamique des ressorts, Tech. Ing., Volume BD2 (1983) (B610-1–B610-11)
[9] Expressions for predicting fundamental natural frequencies of non-cylindrical helical springs, J. Sound Vib., Volume 252 (2002) no. 3, pp. 479-491
[10] Fluid Transients in Systems, Prentice Hall, Englewood Cliffs NJ, 1993
[11] An efficient numerical method for predicting the natural frequencies of cylindrical helical springs, Int. J. Mech. Sci., Volume 41 (1999), pp. 919-939
[12] Dynamic stiffness formulation, free vibration and wave motion of helical springs, J. Sound Vib., Volume 239 (2001) no. 2, pp. 279-320
[13] Free vibration analysis of cylindrical helical springs by the pseudo spectral method, J. Sound Vib., Volume 302 (2007), pp. 185-196
[14] On the natural frequencies of helical compression springs, Int. J. Mech. Sci., Volume 44 (2002), pp. 825-841
[15] The forced vibration of helical spring, Int. J. Mech. Sci., Volume 34 (1992), pp. 549-563
[16] Large deflections of impacted helical springs, J. Acoust. Soc. Am., Volume 51 (1971), pp. 967-972
[17] The numerical solution of the dynamic response of helical springs, Int. J. Numer. Methods Eng., Volume 12 (1978), pp. 949-961
[18] The numerical solution of strain waves propagation in elastic helical springs, Mater. Technol. (2007), pp. 47-52
[19] Influence des caractéristiques mécaniques sur la propagation des ondes de déformations linéaires dans les ressorts hélicoïdaux, Méc. Ind., Volume 7 (2006), pp. 551-563
[20] Simulation numérique du comportement dynamique linéaire des ressorts hélicoïdaux, Trans. Can. Soc. Mech. Eng., Volume 30 (2006) no. 2, pp. 191-208
[21] Comportement dynamique des ressorts hélicoïdaux composites, Hammamet, Tunisia ( 16-18 March 2009 )
[22] Difference schemes for hyperbolic equations with high order of accuracy, Commun. Pure Appl. Math., Volume 17 (1966), pp. 381-398
[23] Sur le choix des schémas aux différences du second ordre fournissant des profils de choc sans oscillations, C. R. Acad. Sci. Paris, Volume 277 (1966), pp. 363-366
[24] Finite element solution of dynamic response of helical springs, Int. J. Simul. Model., Volume 7 (2008) no. 1, pp. 17-28
[25] Introduction to Numerical Analysis, Addison-Wesley Publishing Company, USA, 1979
[26] Numerical buckling analysis of cylindrical helical coil springs in dynamic manner, Int. J. Eng. Appl. Sci., Volume 1 (2009) no. 1, pp. 20-32
Cited by Sources:
Comments - Policy