Comptes Rendus
Towards hybrid circuit quantum electrodynamics with quantum dots
[Vers une électrodynamique quantique en cavité sur puce avec des boîtes quantiques]
Comptes Rendus. Physique, Quantum microwaves / Micro-ondes quantiques, Volume 17 (2016) no. 7, pp. 705-717.

L'électrodynamique quantique en cavité permet d'étudier l'interaction lumière–matière au niveau le plus fondamental. Les méthodes développées dans ce domaine permettent de sonder des systèmes quantiques modèles, comme les atomes ou les bits quantiques supraconducteurs, avec une précision inégalée. Ces succès ont motivé un effort pour étendre ces techniques à d'autres systèmes quantiques, notamment aux circuits hybrides à base de boîtes quantiques. Le couplage de cavités micro-ondes à de tels systèmes pourrait déboucher sur des caractérisations non invasives des boîtes quantiques, sur la réalisation de bits quantiques de spin à grande échelle, ou sur l'élaboration d'une plateforme de simulation quantique de systèmes spin–bosons en matière condensée. Nous présentons dans ce court article de revue un état de l'art expérimental, et introduisons une description théorique simple des systèmes hybrides à base de boîtes quantiques développés pour l'électrodynamique en cavité.

Cavity quantum electrodynamics allows one to study the interaction between light and matter at the most elementary level. The methods developed in this field have taught us how to probe and manipulate individual quantum systems like atoms and superconducting quantum bits with an exquisite accuracy. There is now a strong effort to extend further these methods to other quantum systems, and in particular hybrid quantum dot circuits. This could turn out to be instrumental for a noninvasive study of quantum dot circuits and a realization of scalable spin quantum bit architectures. It could also provide an interesting platform for quantum simulation of simple fermion–boson condensed matter systems. In this short review, we discuss the experimental state of the art for hybrid circuit quantum electrodynamics with quantum dots, and we present a simple theoretical modeling of experiments.

Publié le :
DOI : 10.1016/j.crhy.2016.07.008
Keywords: Circuit QED, Quantum dots, Quantum transport
Mots-clés : Électrodynamique quantique des circuits, Boîtes quantiques, Transport électrique quantique

Jérémie J. Viennot 1 ; Matthieu R. Delbecq 1 ; Laure E. Bruhat 1 ; Matthieu C. Dartiailh 1 ; Matthieu M. Desjardins 1 ; Matthieu Baillergeau 1 ; Audrey Cottet 1 ; Takis Kontos 1

1 Laboratoire Pierre-Aigrain, École normale supérieure – PSL Research University, CNRS, Université Pierre-et-Marie-Curie – Sorbonne Universités, Université Paris-Diderot – Sorbonne Paris Cité, 24, rue Lhomond, 75231 Paris cedex 05, France
@article{CRPHYS_2016__17_7_705_0,
     author = {J\'er\'emie J. Viennot and Matthieu R. Delbecq and Laure E. Bruhat and Matthieu C. Dartiailh and Matthieu M. Desjardins and Matthieu Baillergeau and Audrey Cottet and Takis Kontos},
     title = {Towards hybrid circuit quantum electrodynamics with quantum dots},
     journal = {Comptes Rendus. Physique},
     pages = {705--717},
     publisher = {Elsevier},
     volume = {17},
     number = {7},
     year = {2016},
     doi = {10.1016/j.crhy.2016.07.008},
     language = {en},
}
TY  - JOUR
AU  - Jérémie J. Viennot
AU  - Matthieu R. Delbecq
AU  - Laure E. Bruhat
AU  - Matthieu C. Dartiailh
AU  - Matthieu M. Desjardins
AU  - Matthieu Baillergeau
AU  - Audrey Cottet
AU  - Takis Kontos
TI  - Towards hybrid circuit quantum electrodynamics with quantum dots
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 705
EP  - 717
VL  - 17
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.07.008
LA  - en
ID  - CRPHYS_2016__17_7_705_0
ER  - 
%0 Journal Article
%A Jérémie J. Viennot
%A Matthieu R. Delbecq
%A Laure E. Bruhat
%A Matthieu C. Dartiailh
%A Matthieu M. Desjardins
%A Matthieu Baillergeau
%A Audrey Cottet
%A Takis Kontos
%T Towards hybrid circuit quantum electrodynamics with quantum dots
%J Comptes Rendus. Physique
%D 2016
%P 705-717
%V 17
%N 7
%I Elsevier
%R 10.1016/j.crhy.2016.07.008
%G en
%F CRPHYS_2016__17_7_705_0
Jérémie J. Viennot; Matthieu R. Delbecq; Laure E. Bruhat; Matthieu C. Dartiailh; Matthieu M. Desjardins; Matthieu Baillergeau; Audrey Cottet; Takis Kontos. Towards hybrid circuit quantum electrodynamics with quantum dots. Comptes Rendus. Physique, Quantum microwaves / Micro-ondes quantiques, Volume 17 (2016) no. 7, pp. 705-717. doi : 10.1016/j.crhy.2016.07.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.008/

[1] G. Binnig; C.F. Quate Phys. Rev. Lett., 56 (1986), p. 930

[2] R.J. Abraham; J. Fisher; P. Loftus Introduction to NMR Spectroscopy, Wiley, 1992

[3] D.J. Reilly; C.M. Marcus; M.P. Hanson; A.C. Gossard Appl. Phys. Lett., 91 (2007), p. 162101

[4] A. Pretre; H. Thomas; M. Buttiker Phys. Rev. B, 54 (1996), p. 8130

[5] J. Gabelli; G. Feve; J.-M. Berroir; B. Placais; A. Cavanna; B. Étienne; Y. Jin; D.C. Glattli Science, 313 (2006), pp. 499-502

[6] A. Blais; R.-S. Huang; A. Wallraff; S.M. Girvin; R.J. Schoelkopf Phys. Rev. A, 69 (2004)

[7] A. Wallraff; D. Schuster; A. Blais; L. Frunzio; R.-S. Huang; J. Majer; S. Kumar; S.M. Girvin; R.J. Schoelkopf Nature, 431 (2004), pp. 162-167

[8] J.J. Viennot; M.C. Dartiailh; A. Cottet; T. Kontos Science, 349 (2015), pp. 408-411

[9] D. Loss; D.P. DiVincenzo Phys. Rev. A, 57 (1998), p. 120

[10] A. Cottet; T. Kontos Phys. Rev. Lett., 105 (2010)

[11] M. Trif; V.N. Golovach; D. Loss Phys. Rev. B, 77 (2008)

[12] P.-Q. Jin; M. Marthaler; A. Shnirman; G. Schon Phys. Rev. Lett., 108 (2012)

[13] L. Childress; A. Sorensen; M. Lukin Phys. Rev. A, 69 (2004)

[14] G. Burkard; A. Imamoglu Phys. Rev. B, 74 (2006)

[15] S. Hermelin; S. Takada; M. Yamamoto; S. Tarucha; A.D. Wieck; L. Saminadayar; C. Bauerle; T. Meunier Nature, 477 (2011), pp. 435-438

[16] L. Trifunovic; O. Dial; M. Trif; J.R. Wootton; R. Abebe; A. Yacoby; D. Loss Phys. Rev. X, 2 (2012)

[17] Y. Kubo; F. Ong; P. Bertet; D. Vion; V. Jacques; D. Zheng; A. Dreau; J.-F. Roch; A. Auffeves; F. Jelezko; J. Wrachtrup; M. Barthe; P. Bergonzo; D. Esteve Phys. Rev. Lett., 105 (2010)

[18] D. Schuster; A. Sears; E. Ginossar; L. DiCarlo; L. Frunzio; J. Morton; H. Wu; G. Briggs; B. Buckley; D. Awschalom; R.J. Schoelkopf Phys. Rev. Lett., 105 (2010)

[19] Y. Tabuchi; S. Ishino; T. Ishikawa; R. Yamazaki; K. Usami; Y. Nakamura Phys. Rev. Lett., 113 (2014)

[20] A.D. O'Connell; M. Hofheinz; M. Ansmann; R.C. Bialczak; M. Lenander; E. Lucero; M. Neeley; D. Sank; H. Wang; M. Weides; J. Wenner; J.M. Martinis; A.N. Cleland Nature, 464 (2010), pp. 697-703

[21] D. Teufel; T. Donner; D. Li; J.W. Harlow; M.S. Allman; K. Cicak; A.J. Sirois; J.D. Whittaker; K.W. Lehnert; R.W. Simmonds Nature, 475 (2011), pp. 359-363

[22] J. Bochmann; A. Vainsencher; D. Awschalom; A.N. Cleland Nat. Phys., 9 (2013), pp. 712-716

[23] T. Frey; P.J. Leek; M. Beck; K. Ensslin; A. Wallraff; T. Ihn Appl. Phys. Lett., 98 (2011), p. 262105

[24] K.D. Petersson; L.W. McFaul; M.D. Schroer; M. Jung; J.M. Taylor; A.A. Houck; J.R. Petta Nature, 490 (2012), pp. 380-383

[25] J.J. Viennot; J. Palomo; T. Kontos Appl. Phys. Lett., 104 (2014), p. 113108

[26] M.-L. Zhang; D. Wei; G.-W. Deng; S.-X. Li; H.-O. Li; G. Cao; T. Tu; M. Xiao; G.-C. Guo; H.-W. Jiang; G.-P. Guo Appl. Phys. Lett., 105 (2014)

[27] M. Goppl; A. Fragner; M. Baur; R. Bianchetti; S. Filipp; J.M. Fink; P.J. Leek; G. Puebla; L. Steffen; A. Wallraff J. Appl. Phys., 104 (2009)

[28] A. Cottet; T. Kontos; B. Doucot Phys. Rev. B, 91 (2015)

[29] A. Cottet; C. Mora; T. Kontos Phys. Rev. B, 83 (2011)

[30] M.R. Delbecq; V. Schmitt; F. Parmentier; N. Roch; J.J. Viennot; G. Feve; B. Huard; C. Mora; A. Cottet; T. Kontos Phys. Rev. Lett., 107 (2011)

[31] T. Frey; P.J. Leek; M. Beck; J. Faist; A. Wallraff; K. Ensslin; T. Ihn; M. Buttiker Phys. Rev. B, 86 (2012)

[32] L.E. Bruhat; J.J. Viennot; M.C. Dartiailh; M.M. Desjardins; T. Kontos; A. Cottet Phys. Rev. X, 6 (2016)

[33] W. van der Wiel; S. De Franceschi; J.M. Elzerman; T. Fujisawa; S. Tarucha; L.P. Kouwenhoven Rev. Mod. Phys., 75 (2002), p. 1

[34] M.R. Delbecq; L.E. Bruhat; J.J. Viennot; S. Datta; A. Cottet; T. Kontos Nat. Commun., 4 (2013), p. 1400

[35] T. Hayashi; T. Fujisawa; H. Cheong; Y. Jeong; Y. Hirayama Phys. Rev. Lett., 91 (2003)

[36] T. Frey; P.J. Leek; M. Beck; A. Blais; T. Ihn; K. Ensslin; A. Wallraff Phys. Rev. Lett., 108 (2012)

[37] J.J. Viennot; M.R. Delbecq; M.C. Dartiailh; A. Cottet; T. Kontos Phys. Rev. B, 89 (2014)

[38] H. Toida; T. Nakajima; S. Komiyama; A. Wallraff; A. Stockklauser; T. Ihn; J.R. Petta; A. Blais Phys. Rev. Lett., 110 (2013)

[39] S. Andre; V. Brosco; M. Marthaler; A. Shnirman; G. Schon Phys. Scr. T, 137 (2009)

[40] M. Kulkarni; O. Cotlet; H.E. Tureci Phys. Rev. B, 90 (2014)

[41] K. Ono; D.G. Austing; Y. Tokura; S. Tarucha Science, 297 (2002), pp. 1313-1317

[42] R. Hanson; J.R. Petta; S. Tarucha; L.M.K. Vandersypen Rev. Mod. Phys., 79 (2007), p. 1217

[43] A. Cottet, Université Paris-6, Paris, 2002 (PhD thesis)

[44] G. Ithier; E. Collin; P. Joyez; P. Meeson; D. Vion; D. Esteve; F. Chiarello; A. Shnirman; Y. Makhlin; J. Schriefl; G. Schon Phys. Rev. B, 72 (2005)

[45] J. Basset; A. Stockklauser; D.-D. Jarausch; T. Frey; C. Reichl; W. Wegscheider; A. Wallraff; K. Ensslin; T. Ihn Appl. Phys. Lett., 105 (2014)

[46] Y.-Y. Liu; J. Stehlik; C. Eichler; M.J. Gullans; J.M. Taylor; J.R. Petta Science, 347 (2015), pp. 285-287

[47] Y.-Y. Liu; K.D. Petersson; J. Stehlik; J.M. Taylor; J.R. Petta Phys. Rev. Lett., 113 (2014)

[48] P.-Q. Jin; M. Marthaler; J.H. Cole; A. Shnirman; G. Schon Phys. Rev. B, 84 (2011)

[49] A. Stockklauser; V.F. Maisi; J. Basset; K. Cujia; C. Reichl; W. Wegscheider; T. Ihn; A. Wallraff; K. Ensslin Phys. Rev. Lett., 115 (2015)

[50] J.T. Muhonen; J.P. Dehollain; A. Laucht; F.E. Hudson; R. Kalra; T. Sekiguchi; K.M. Itoh; D.N. Jamieson; J.C. McCallum; A.S. Dzurak; A. Morello Nat. Nanotechnol., 9 (2014), pp. 986-991

[51] B.M. Maune; M.G. Borselli; B. Huang; T.D. Ladd; P.W. Deelman; K.S. Holabird; A.A. Kiselev; I. Alvarado-Rodriguez; R.S. Ross; A.E. Schmitz; M. Sokolich; C.A. Watson; M.F. Gyure; A.T. Hunter Nature, 481 (2012), pp. 344-347

[52] A. Bienfait; J.J. Pla; Y. Kubo; M. Stern; X. Zhou; C.C. Lo; C.D. Weis; T. Schenkel; M.L.W. Thewalt; D. Vion; D. Esteve; B. Julsgaard; K. Moelmer; J.J.L. Morton; P. Bertet, 2015 | arXiv

[53] A. Bienfait; J.J. Pla; Y. Kubo; X. Zhou; M. Stern; C.C. Lo; C.D. Weis; T. Schenkel; D. Vion; D. Esteve; J.J.L. Morton; P. Bertet, 2015 | arXiv

[54] C. Bergenfeldt; P. Samuelsson Phys. Rev. B, 87 (2013)

[55] N. Lambert; C. Flindt; F. Nori Europhys. Lett., 103 (2013), p. 17005

[56] L.D. Contreras-Pulido; C. Emary; T. Brandes; R. Aguado New J. Phys., 15 (2013)

[57] A. Cottet; T. Kontos; A.L. Yeyati Phys. Rev. Lett., 108 (2012)

[58] A. Cottet Phys. Rev. B, 90 (2014)

[59] A. Cottet; T. Kontos; B. Doucot Phys. Rev. B, 88 (2013)

[60] M. Trif; Y. Tserkovnyak Phys. Rev. Lett., 109 (2012)

[61] F. Hassler; A.R. Akhmerov; C.W.J. Beenakker New J. Phys., 13 (2011)

  • Jin-Yi 金义 Wang 王; Lei-Lei 磊磊 Nian 年; Jing-Tao 京涛 Lü 吕 Engineering Quantum Criticality for Quantum Dot Power Harvesting, Chinese Physics Letters, Volume 41 (2024) no. 2, p. 020503 | DOI:10.1088/0256-307x/41/2/020503
  • Guido Burkard; Thaddeus D. Ladd; Andrew Pan; John M. Nichol; Jason R. Petta Semiconductor spin qubits, Reviews of Modern Physics, Volume 95 (2023) no. 2 | DOI:10.1103/revmodphys.95.025003
  • Michele Filippone; Arthur Marguerite; Karyn Le Hur; Gwendal Fève; Christophe Mora Phase-Coherent Dynamics of Quantum Devices with Local Interactions, Entropy, Volume 22 (2020) no. 8, p. 847 | DOI:10.3390/e22080847
  • M. Lavagna; V. Talbo; T. Q. Duong; A. Crépieux Level anticrossing effect in single-level or multilevel double quantum dots: Electrical conductance, zero-frequency charge susceptibility, and Seebeck coefficient, Physical Review B, Volume 102 (2020) no. 11 | DOI:10.1103/physrevb.102.115112
  • Archak Purkayastha; Manas Kulkarni; Yogesh N. Joglekar Emergent PT symmetry in a double-quantum-dot circuit QED setup, Physical Review Research, Volume 2 (2020) no. 4 | DOI:10.1103/physrevresearch.2.043075
  • Mattia Mantovani; Wolfgang Belzig; Gianluca Rastelli; Robert Hussein Single-photon pump by Cooper-pair splitting, Physical Review Research, Volume 1 (2019) no. 3 | DOI:10.1103/physrevresearch.1.033098
  • Xin Zhang; Hai-Ou Li; Ke Wang; Gang Cao; Ming Xiao; Guo-Ping Guo Qubits based on semiconductor quantum dots, Chinese Physics B, Volume 27 (2018) no. 2, p. 020305 | DOI:10.1088/1674-1056/27/2/020305
  • Yan Li; Shu-Xiao Li; Fei Gao; Hai-Ou Li; Gang Xu; Ke Wang; Di Liu; Gang Cao; Ming Xiao; Ting Wang; Jian-Jun Zhang; Guang-Can Guo; Guo-Ping Guo Coupling a Germanium Hut Wire Hole Quantum Dot to a Superconducting Microwave Resonator, Nano Letters, Volume 18 (2018) no. 3, p. 2091 | DOI:10.1021/acs.nanolett.8b00272
  • Maximilian Russ; J. R. Petta; Guido Burkard Quadrupolar Exchange-Only Spin Qubit, Physical Review Letters, Volume 121 (2018) no. 17 | DOI:10.1103/physrevlett.121.177701
  • Maximilian Russ; Guido Burkard Three-electron spin qubits, Journal of Physics: Condensed Matter, Volume 29 (2017) no. 39, p. 393001 | DOI:10.1088/1361-648x/aa761f

Cité par 10 documents. Sources : Crossref

Commentaires - Politique