Comptes Rendus
Modelling of a hydrogel diffraction grating used for pH-sensing
Comptes Rendus. Mécanique, Volume 342 (2014) no. 12, pp. 706-713.

pH-Sensitive hydrogels are networks of polymers that can imbibe a solution and swell. They are used in many smart engineering devices. One of such applications is a diffractometric biochemical sensor. This sensor is composed of a hydrogel grating fixed on a hard substrate that can swell due to pH changes. The aim of the present study is to develop a numerical model of such a bi-material device used to measure pH value of a solution.

Les hydrogels sensibles au pH sont des réseaux de polymères qui gonflent lorsqu'ils sont immergés dans une solution. Ils sont présents dans de nombreux systèmes d'ingénierie intelligents. L'application retenue est un capteur biochimique utilisant la diffractométrie. Ce capteur se déforme en fonction des variations du pH. Il se compose d'une grille d'hydrogel fixée à un substrat rigide. L'objectif de cette étude est de développer un modèle numérique d'un tel système de bi-matériaux, système utilisé pour mesurer le pH d'une solution.

Published online:
DOI: 10.1016/j.crme.2014.07.007
Keywords: Hydrogel, Diffraction grating, Biochemical sensor, pH-Sensing
Mot clés : Hydrogel, Grille de diffraction, Capteur biochimique, Mesure du pH

Maïté Marchant 1; Florence Labesse-Jied 2; Nikolay A. Gippius 1; Yuri Lapusta 3

1 Clermont Université, Institut Pascal, UMR CNRS 6602, Université Blaise Pascal, 24, avenue des Landais, 63170 Aubière, France
2 Clermont Université, Institut Pascal, UMR CNRS 6602, Université Blaise Pascal, IUT d'Allier, BP 2235, 03100 Montluçon, France
3 French Institute of Advanced Mechanics, Institut Pascal/IFMA/CNRS/UBP/Clermont Université, campus de Clermont-Ferrand, BP 265, 63175 Aubière cedex, France
     author = {Ma{\"\i}t\'e Marchant and Florence Labesse-Jied and Nikolay A. Gippius and Yuri Lapusta},
     title = {Modelling of a hydrogel diffraction grating used for {pH-sensing}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {706--713},
     publisher = {Elsevier},
     volume = {342},
     number = {12},
     year = {2014},
     doi = {10.1016/j.crme.2014.07.007},
     language = {en},
AU  - Maïté Marchant
AU  - Florence Labesse-Jied
AU  - Nikolay A. Gippius
AU  - Yuri Lapusta
TI  - Modelling of a hydrogel diffraction grating used for pH-sensing
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 706
EP  - 713
VL  - 342
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2014.07.007
LA  - en
ID  - CRMECA_2014__342_12_706_0
ER  - 
%0 Journal Article
%A Maïté Marchant
%A Florence Labesse-Jied
%A Nikolay A. Gippius
%A Yuri Lapusta
%T Modelling of a hydrogel diffraction grating used for pH-sensing
%J Comptes Rendus. Mécanique
%D 2014
%P 706-713
%V 342
%N 12
%I Elsevier
%R 10.1016/j.crme.2014.07.007
%G en
%F CRMECA_2014__342_12_706_0
Maïté Marchant; Florence Labesse-Jied; Nikolay A. Gippius; Yuri Lapusta. Modelling of a hydrogel diffraction grating used for pH-sensing. Comptes Rendus. Mécanique, Volume 342 (2014) no. 12, pp. 706-713. doi : 10.1016/j.crme.2014.07.007.

[1] G. Gerlach; K.-F. Arndt Hydrogel Sensors and Actuators, Springer, Berlin, 2009

[2] M. Moscardo; X. Zhao; Z. Suo; Y. Lapusta On designing dielectric elastomer actuators, J. Appl. Phys., Volume 104 (2008), p. 093503

[3] C. Steinem; A. Janshoff Piezoelectric Sensors, Springer, Berlin, 2006

[4] Y. Lapusta; V. Loboda Electro-mechanical yielding for a limited permeable crack in an interlayer between piezoelectric materials, Mech. Res. Commun., Volume 36 (2009) no. 2, pp. 183-192

[5] S. Sugiura; K. Sumaru; K. Ohi; K. Hiroki; T. Takagi; T. Kanamori Photoresponsive polymer gel microvalves controlled by local light irradiation, Sens. Actuators A, Phys., Volume 140 (2007), pp. 176-184

[6] W.R. Seitz New directions in fiber optic chemical sensors: sensors based on polymer swelling, J. Mol. Struct., Volume 292 (1993), pp. 105-114

[7] G. Gerlach; M. Günther; G. Suchaneck; J. Sorber; J.K.F. Arndt; A. Richter Application of sensitive hydrogels in chemical and pH sensors, Macromol. Symp., Volume 210 (2004), pp. 403-410

[8] M.E. Harmon; M. Tang; C.W. Frank A microfluidic actuator based on thermoresponsive hydrogels, Polymer, Volume 44 (2003), pp. 4547-4556

[9] V.A. Sethuraman; K. Na; Y.H. Bae pH-Responsive sulfonamide/PEI system for tumor specific gene delivery: an in vitro study, Biomacromolecules, Volume 7 (2006), pp. 64-70

[10] N. Zalachas; S. Cai; Z. Suo; Y. Lapusta Crease in a ring of a pH-sensitive hydrogel swelling under constraint, Int. J. Solids Struct., Volume 50 (2013), pp. 920-927

[11] C.L. Chang; Z. Ding; V.N.L.R. Patchigolla; B. Ziaie; C.A. Savran Diffractometric biochemical sensing with smart hydrogels, IEEE Sensors Conference, 2010, pp. 1617-1621

[12] R. Marcombe; S. Cai; W.H. Xuanhe Zhao; Y. Lapusta; Z. Suo A theory of constrained swelling of a pH-sensitive hydrogel, Soft Matter, Volume 6 (2010), pp. 784-793

[13] P.J. Flory Principles of Polymer Chemistry, Cornell University Press, Ithaca, 1953

[14] J. Ricka; T. Tanaka Swelling of ionic gels: quantitative performance of the Donnan theory, Macromolecules, Volume 17 (1984), pp. 2916-2921

[15] L. Brannon-Peppas; N.A. Peppas Equilibrium swelling behavior of pH-sensitive hydrogels, Chem. Eng. Sci., Volume 46 (1991), pp. 715-722

[16] C.L. Chang; G. Acharya; C.A. Savran In situ assembled diffraction grating for biomolecular detection, Appl. Phys. Lett., Volume 90 (2007), p. 233901

[17] S.G. Tikhodeev; A.L. Yablonskii; E.A. Muljarov; N.A. Gippius; T. Ishihara Quasiguided modes and optical properties of photonic crystal slabs, Phys. Rev. B, Volume 66 (2002), p. 045102

Cited by Sources:

Comments - Policy