Comptes Rendus
Three-dimensional Rayleigh–Bénard magnetoconvection: Effect of the direction of the magnetic field on heat transfer and flow patterns
Comptes Rendus. Mécanique, Volume 342 (2014) no. 12, pp. 714-725.

The effect of an imposed magnetic field on Rayleigh–Bénard three-dimensional natural convection was investigated numerically. The cubical cavity is heated from below and cooled from above, and the remaining side walls are insulated. The magnetic field is tilted at an angle α about the horizontal. Flow field and heat transfer were predicted for fluid with Pr=0.71 and a wide range of governing parameters such as a Rayleigh number between 5×104 and 105, a Hartmann number between 0 and 60, and an inclination angle between 0° and 360°. When a magnetic field is applied on a non-conducting fluid within a cubical cavity, whether the natural convection is promoted or damped is found to depend on both the direction and the magnitude of the magnetic field. The average Nusselt number decreased with an increase of the Hartmann number and increased with an increase of the Rayleigh number. The maximum heat transfer rate was observed for α=30° and Ha=10, while heat transfer was poor for the vertical direction of the magnetic field. The dependence of the promotion or damping efficiency on α and Ha is also discussed in terms of isocontours and isosurfaces in sight of the dynamic and thermal behaviour of the flow.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2014.09.001
Mots clés : Heat transfer, Magnetoconvection, Rayleigh–Bénard, Cubical cavity
Awatef Naffouti 1 ; Brahim Ben-Beya 1 ; Taieb Lili 1

1 Laboratoire de mécanique des fluides, Faculté des sciences de Tunis, Département de physique, 2092 El Manar 2, Tunis, Tunisia
@article{CRMECA_2014__342_12_714_0,
     author = {Awatef Naffouti and Brahim Ben-Beya and Taieb Lili},
     title = {Three-dimensional {Rayleigh{\textendash}B\'enard} magnetoconvection: {Effect} of the direction of the magnetic field on heat transfer and flow patterns},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {714--725},
     publisher = {Elsevier},
     volume = {342},
     number = {12},
     year = {2014},
     doi = {10.1016/j.crme.2014.09.001},
     language = {en},
}
TY  - JOUR
AU  - Awatef Naffouti
AU  - Brahim Ben-Beya
AU  - Taieb Lili
TI  - Three-dimensional Rayleigh–Bénard magnetoconvection: Effect of the direction of the magnetic field on heat transfer and flow patterns
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 714
EP  - 725
VL  - 342
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2014.09.001
LA  - en
ID  - CRMECA_2014__342_12_714_0
ER  - 
%0 Journal Article
%A Awatef Naffouti
%A Brahim Ben-Beya
%A Taieb Lili
%T Three-dimensional Rayleigh–Bénard magnetoconvection: Effect of the direction of the magnetic field on heat transfer and flow patterns
%J Comptes Rendus. Mécanique
%D 2014
%P 714-725
%V 342
%N 12
%I Elsevier
%R 10.1016/j.crme.2014.09.001
%G en
%F CRMECA_2014__342_12_714_0
Awatef Naffouti; Brahim Ben-Beya; Taieb Lili. Three-dimensional Rayleigh–Bénard magnetoconvection: Effect of the direction of the magnetic field on heat transfer and flow patterns. Comptes Rendus. Mécanique, Volume 342 (2014) no. 12, pp. 714-725. doi : 10.1016/j.crme.2014.09.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.09.001/

[1] P.H. Kao; R.J. Yang Simulating oscillatory flows in Rayleigh–Bénard convection using the lattice Boltzmann method, Int. J. Heat Mass Transf., Volume 50 (2007), pp. 3315-3328

[2] M. Corcione Effects of the thermal boundary conditions at the sidewalls upon natural convection in rectangular enclosures heated from below and cooled from above, Int. J. Therm. Sci., Volume 42 (2003), pp. 199-208

[3] M. Cappelli; D. Orazio; C. Cianfrini; M. Corcione Rayleigh–Bénard convection in tall rectangular enclosures, Int. J. Therm. Sci., Volume 43 (2004), pp. 135-144

[4] S. Paul; P. Wahi; Mahendra K. Verma Bifurcations and chaos in large-Prandtl number Rayleigh–Bénard convection, Int. J. Non-Linear Mech., Volume 46 (2011), pp. 772-781

[5] N. Nithyadevi; P. Kandaswamy; S.M. Sundari Magnetoconvection in a square cavity with partially active vertical walls: time periodic boundary condition, Int. J. Heat Mass Transf., Volume 52 (2009), pp. 1945-1953

[6] N. Rudraiah; R.M. Barron; M. Venkatachalappa; C.K. Subbaraya Effect of magnetic field on free convection in a rectangular enclosure, Int. J. Eng. Sci., Volume 33 (1995), pp. 1075-1084

[7] A. Al-Mudhaf; A.J. Chamkha Natural convection of liquid metals in an inclined enclosure in the presence of a magnetic field, Fluid Mech. Res., Volume 31 (2004) no. 3, pp. 221-243

[8] H. Ozoe Magnetic Convection, Imperial College Press, London, 2005

[9] M. Pirmohammadi; M. Ghassemi; G.A. Sheikhzadeh Effect of a magnetic field on buoyancy-driven convection in differentially heated square cavity, IEEE Trans. Magn., Volume 45 (2009), pp. 407-411

[10] T. Bednarz; C. Lei; J.C. Patterson; H. Ozoe Suppressing Rayleigh–Bénard convection in a cube using strong magnetic field — experimental heat transfer rate measurements and flow visualization, Int. Commun. Heat Mass Transf., Volume 36 (2009) no. 2, pp. 97-102

[11] T. Tagawa; A. Ujihara; H. Ozoe Numerical computation for Rayleigh–Bénard convection of water in a magnetic field, Int. J. Heat Mass Transf., Volume 46 (2003), pp. 4097-4104

[12] S. Alchaar; P. Vasseur; E. Bilgen The effect of a magnetic field on natural convection in a shallow cavity heated from below, Chem. Eng. Commun., Volume 134 (1995), pp. 195-209

[13] T. Sophy; H. Sadatt; L. Gbahoue Convection thermomagnétique dans une cavité différentiellement chauffée, Int. Commun. Heat Mass Transf., Volume 32 (2005), pp. 923-930

[14] M.C. Ece; E. Büyük The effect of an external magnetic field on natural convection in an inclined rectangular enclosure, J. Mech. Eng. Sci., Volume 221 (2007), pp. 1609-1622

[15] M. Pirmohammadi; M. Ghassemi Effect of magnetic field on convection heat transfer inside a tilted square enclosure, Int. Commun. Heat Mass Transf., Volume 36 (2009), pp. 776-780

[16] D.C. Lo High-resolution simulations of magneto-hydrodynamic free convection in an enclosure with a transverse magnetic field using a velocity–vorticity formulation, Int. Commun. Heat Mass Transf., Volume 37 (2010), pp. 514-523

[17] H. Ozoe; K. Okada The effect of the direction of the external magnetic field on the three-dimensional natural convection in a cubical enclosure, Int. J. Heat Mass Transf., Volume 32 (1989) no. 10, pp. 1939-1954

[18] R. Mobner; U. Muller A numerical investigation of three dimensional magnetoconvection in rectangular cavities, Int. J. Heat Mass Transf., Volume 42 (1999), pp. 1111-1121

[19] I. Di Piazza; M. Ciofalo MHD free convection in a liquid–metal filled cubic enclosure. – I. Differential heating, Int. J. Heat Mass Transf., Volume 45 (2002) no. 7, pp. 1477-1492

[20] S. Kenjereš; K. Hanjalić Numerical simulation of magnetic control of heat transfer in thermal convection, Int. J. Heat Fluid Flow, Volume 25 (2004), pp. 559-568

[21] B. Xu; B.Q. Li; D.E. Stock An experimental study of thermally induced convection of molten gallium in magnetic fields, Int. J. Heat Mass Transf., Volume 49 (2006), pp. 2009-2019

[22] T. Bednarz; E. Fornalik; H. Ozoe; Janusz S. Szmyd; John C. Patterson; L. Chengwang Influence of a horizontal magnetic field on the natural convection of paramagnetic fluid in a cube heated and cooled from two vertical side walls, Int. J. Therm. Sci., Volume 47 (2008), pp. 668-679

[23] D. Henry; A. Juel; H. Ben Hadid; S. Kaddeche Directional effect of a magnetic field on oscillatory low-Prandtl-number convection, Phys. Fluids, Volume 20 (2008), p. 034104

[24] H. Varshney; M. Faisal Baig Rotating Rayleigh–Bénard convection under the influence of transverse magnetic field, Int. J. Heat Mass Transf., Volume 51 (2008), pp. 4095-4108

[25] S. Sivasankaran; C.J. Ho Effect of temperature dependent properties on MHD convection of water near its density maximum in a square cavity, Int. J. Therm. Sci., Volume 47 (2008), pp. 1184-1194

[26] S. Bouabdallah; R. Bessaïh Effect of magnetic field on 3D flow and heat transfer during solidification from a melt, Int. J. Heat Fluid Flow, Volume 37 (2012), pp. 154-166

[27] B. Ben-Beya; T. Lili Transient natural convection in 3D tilted enclosure heated from two opposite sides, Int. Commun. Heat Mass Transf., Volume 36 (2009), pp. 604-613

[28] B. Ben-Beya; T. Lili Three-dimensional incompressible flow in a two-sided non-facing lid-driven cubical cavity, C. R. Mecanique, Volume 336 (2008), pp. 863-872

[29] A.Yu. Gelfgat Different modes of Rayleigh–Bénard instability in two- and three-dimensional rectangular enclosures, J. Comput. Phys., Volume 156 (1999), pp. 300-324

[30] Xiaowen Shan Simulation of Rayleigh–Bénard convection using a lattice Boltzmann method, Phys. Rev., Volume 55 (1997) no. 3, p. 2780

[31] M. Sathiyamoorthy; A.J. Chamkha Natural convection flow under magnetic field in a square cavity for uniformly (or) linearly heated adjacent walls, Int. J. Numer. Methods Heat Fluid Flow, Volume 22 (2012), pp. 677-698

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Aptitude of a lattice Boltzmann method for evaluating transitional thresholds for low Prandtl number flows in enclosures

Mohammed El Ganaoui; R. Djebali

C. R. Méca (2010)


Numerical simulation of two-dimensional Rayleigh–Bénard convection in an enclosure

Nasreddine Ouertatani; Nader Ben Cheikh; Brahim Ben Beya; ...

C. R. Méca (2008)


Laminar free convection in undulated cavity with non-uniform boundary conditions

Amina Sabeur-Bendehina; O. Imine; L. Adjlout

C. R. Méca (2011)