This work demonstrates that in advection–diffusion Lattice Boltzmann schemes, the local mass-conserving boundary rules, such as bounce-back and local specular reflection, may modify the transport coefficients predicted by the Chapman–Enskog expansion when they enforce to zero not only the normal, but also the tangential boundary flux. In order to accommodate it to the bulk solution, the system develops a Knudsen-layer correction to the non-equilibrium part of the population solution. Two principal secondary effects—(i) decrease in the diffusion coefficient, and (ii) retardation of the average advection velocity, obtained in a closed analytical form, are proportional, respectively, to freely assigned diagonal weights for equilibrium mass and velocity terms. In addition, due to their transverse velocity gradients, the boundary layers affect the longitudinal diffusion coefficient similarly to Taylor dispersion, as they grow as the square of the Péclet number. These numerical artifacts can be eliminated or reduced by a proper space distribution of the free-tunable collision eigenvalue in two-relaxation-time schemes.
Accepted:
Published online:
Irina Ginzburg 1; Laetitia Roux 1; Goncalo Silva 1
@article{CRMECA_2015__343_10-11_518_0, author = {Irina Ginzburg and Laetitia Roux and Goncalo Silva}, title = {Local boundary reflections in lattice {Boltzmann} schemes: {Spurious} boundary layers and their impact on the velocity, diffusion and dispersion}, journal = {Comptes Rendus. M\'ecanique}, pages = {518--532}, publisher = {Elsevier}, volume = {343}, number = {10-11}, year = {2015}, doi = {10.1016/j.crme.2015.03.004}, language = {en}, }
TY - JOUR AU - Irina Ginzburg AU - Laetitia Roux AU - Goncalo Silva TI - Local boundary reflections in lattice Boltzmann schemes: Spurious boundary layers and their impact on the velocity, diffusion and dispersion JO - Comptes Rendus. Mécanique PY - 2015 SP - 518 EP - 532 VL - 343 IS - 10-11 PB - Elsevier DO - 10.1016/j.crme.2015.03.004 LA - en ID - CRMECA_2015__343_10-11_518_0 ER -
%0 Journal Article %A Irina Ginzburg %A Laetitia Roux %A Goncalo Silva %T Local boundary reflections in lattice Boltzmann schemes: Spurious boundary layers and their impact on the velocity, diffusion and dispersion %J Comptes Rendus. Mécanique %D 2015 %P 518-532 %V 343 %N 10-11 %I Elsevier %R 10.1016/j.crme.2015.03.004 %G en %F CRMECA_2015__343_10-11_518_0
Irina Ginzburg; Laetitia Roux; Goncalo Silva. Local boundary reflections in lattice Boltzmann schemes: Spurious boundary layers and their impact on the velocity, diffusion and dispersion. Comptes Rendus. Mécanique, Lattice Boltzmann methods for solving problems in mechanics / Méthodes de Boltzmann sur réseau pour la résolution de problèmes de mécanique, Volume 343 (2015) no. 10-11, pp. 518-532. doi : 10.1016/j.crme.2015.03.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.03.004/
[1] The Boltzmann Equation and Its Applications, Springer, Berlin, 1988, pp. 252-260
[2] Lattice Boltzmann modeling of microchannel flow in slip flow regime, J. Comput. Phys., Volume 228 (2009), pp. 147-157
[3] Lattice Boltzmann simulations of pressure-driven flows in microchannels using Navier–Maxwell slip boundary conditions, Phys. Fluids, Volume 24 (2012), p. 112001
[4] Lattice-gas automata: a model for the simulation of dispersion phenomena, Phys. Fluids, Volume 1 (1989), pp. 507-512
[5] Diffusion and hydrodynamic dispersion with the lattice Boltzmann method, Phys. Rev. A, Volume 45 (1992) no. 8
[6] Hydrodynamic dispersion at stagnation points: simulations and experiments, Phys. Rev. Lett., Volume 77 (1995), pp. 4952-4962
[7] Dispersion of soluble matter in solvent flowing slowly through a tube, Proc. R. Soc. Lond. A, Volume 219 (1953), pp. 186-203
[8] On the dispersion of a solute in a fluid flowing through a tube, Proc. R. Soc. Lond., Volume 235 (1956), pp. 67-77
[9] Tracer dispersion in two dimensional rough fractures, Phys. Rev. E, Volume 63 (2001)
[10] Generic boundary conditions for Lattice Boltzmann models and their application to advection and anisotropic–dispersion equations, Adv. Water Resour., Volume 28 (2005), pp. 1196-1216
[11] Optimal stability of advection–diffusion lattice Boltzmann models with two relaxation times for positive/negative equilibrium, J. Stat. Phys., Volume 139 (2010) no. 6, pp. 1090-1143
[12] Truncation errors, exact and heuristic stability analysis of two-relaxation-time lattice Boltzmann schemes for anisotropic advection–diffusion equation, Commun. Comput. Phys., Volume 11 (2012) no. 5, pp. 1439-1502
[13] Two-relaxation-time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions, Commun. Comput. Phys., Volume 3 (2008), pp. 427-478
[14] Study of simple hydrodynamic solutions with the two-relaxation-time lattice Boltzmann scheme, Commun. Comput. Phys., Volume 3 (2008), pp. 519-581
[15] Lattice BGK models for Navier–Stokes equation, Europhys. Lett., Volume 17 (1992), pp. 479-484
[16] Local second-order boundary method for lattice Boltzmann models, J. Stat. Phys., Volume 84 (1996), pp. 927-971
[17] Multi-reflection boundary conditions for lattice Boltzmann models, Phys. Rev. E, Volume 68 (2003)
[18] Boundary conditions for thermal lattice Boltzmann equation method, J. Comput. Phys., Volume 237 (2013), pp. 366-395
[19] A lattice Boltzmann method for the advection–diffusion equation with Neumann boundary conditions, Commun. Comput. Phys., Volume 15 (2014) no. 2, pp. 487-505
[20] Viscosity independent numerical errors for lattice Boltzmann models: from recurrence equations to “magic” collision numbers, Comput. Math. Appl., Volume 58 (2009) no. 5, pp. 823-840
[21] A Knudsen layer theory, Physica D, Volume 47 (1991), pp. 241-259
[22] Les problèmes des conditions aux limites dans les méthodes de gaz sur réseaux à plusieurs phases, University of Paris-6, 1994 (PhD thesis)
[23] Boundary flow condition analysis for the three-dimensional lattice Boltzmann model, J. Phys. II, Volume 4 (1994), pp. 191-214
[24] Coarse- and fine-grid numerical behavior of MRT/TRT lattice Boltzmann schemes in regular and random sphere packings, J. Comput. Phys., Volume 281 (2015), pp. 708-742
[25] Mass and momentum transfer across solid-fluid boundaries in the lattice-Boltzmann method, Phys. Rev. E, Volume 86 (2012)
[26] Truncation effect on Taylor–Aris dispersion in two-relaxation-times Lattice Boltzmann scheme: accuracy towards stability, J. Comput. Phys., Volume 299 (2015), pp. 974-1003
[27] Multiple anisotropic collisions for advection–diffusion lattice Boltzmann schemes, Adv. Water Resour., Volume 51 (2013), pp. 381-404
[28] A role of the kinetic parameter on the stability of two-relaxation-time advection–diffusion lattice Boltzmann scheme, Comput. Math. Appl., Volume 61 (2011) no. 12, pp. 3417-3442
[29] Analysis and improvement of Brinkman lattice Boltzmann schemes: bulk, boundary, interface. Similarity and distinctness with finite elements in heterogeneous porous media, Phys. Rev. E, Volume 91 (2015) no. 2
Cited by Sources:
Comments - Policy