Normal propagation of the longitudinal wave through the piezoelectric medium with periodically embedded electrodes is considered. Each pair of electrodes is connected via a circuit with capacitance C. The paper analyzes in detail the unusual features of the dispersion spectrum (K is the Floquet–Bloch wavenumber, T is the period) arising in the special case of a negative value of C. The solution of the dispersion equation shows explicitly the evolution of the passbands and stopbands tunable by varying . One of the striking features is the existence of the poles of ImKT (infinite attenuation) and of the corresponding jumps of the phase ReKT from 0 to π in the stopbands for a certain range of negative C. Besides, for where , the spectrum possesses a low-frequency absolute stopband starting from the quasistatic limit and including the tunable pole of ImKT inside. This stopband is related to the negative value of the quasistatic effective elastic constant in the range . At , the effective constant is infinite while the spectrum degenerates to the straight line at any ω. For C close to , the spectrum consists of the branches with high group velocity and of the quasiflat branches.
Accepted:
Published online:
Anton A. Kutsenko 1, 2; Alexander L. Shuvalov 1, 2; Olivier Poncelet 1, 2; Alexander N. Darinskii 3
@article{CRMECA_2015__343_12_680_0, author = {Anton A. Kutsenko and Alexander L. Shuvalov and Olivier Poncelet and Alexander N. Darinskii}, title = {Quasistatic stopband and other unusual features of the spectrum of a one-dimensional piezoelectric phononic crystal controlled by negative capacitance}, journal = {Comptes Rendus. M\'ecanique}, pages = {680--688}, publisher = {Elsevier}, volume = {343}, number = {12}, year = {2015}, doi = {10.1016/j.crme.2015.07.005}, language = {en}, }
TY - JOUR AU - Anton A. Kutsenko AU - Alexander L. Shuvalov AU - Olivier Poncelet AU - Alexander N. Darinskii TI - Quasistatic stopband and other unusual features of the spectrum of a one-dimensional piezoelectric phononic crystal controlled by negative capacitance JO - Comptes Rendus. Mécanique PY - 2015 SP - 680 EP - 688 VL - 343 IS - 12 PB - Elsevier DO - 10.1016/j.crme.2015.07.005 LA - en ID - CRMECA_2015__343_12_680_0 ER -
%0 Journal Article %A Anton A. Kutsenko %A Alexander L. Shuvalov %A Olivier Poncelet %A Alexander N. Darinskii %T Quasistatic stopband and other unusual features of the spectrum of a one-dimensional piezoelectric phononic crystal controlled by negative capacitance %J Comptes Rendus. Mécanique %D 2015 %P 680-688 %V 343 %N 12 %I Elsevier %R 10.1016/j.crme.2015.07.005 %G en %F CRMECA_2015__343_12_680_0
Anton A. Kutsenko; Alexander L. Shuvalov; Olivier Poncelet; Alexander N. Darinskii. Quasistatic stopband and other unusual features of the spectrum of a one-dimensional piezoelectric phononic crystal controlled by negative capacitance. Comptes Rendus. Mécanique, Volume 343 (2015) no. 12, pp. 680-688. doi : 10.1016/j.crme.2015.07.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.07.005/
[1] Acoustic Metamaterials and Phononic Crystals (P.A. Deymier, ed.), Springer Series in Solid-State Sciences, vol. 173, Springer, Berlin, 2013 (Chap. 8)
[2] Thermal tuning of phononic bandstructure in ferroelectric ceramic/epoxy phononic crystal, Appl. Phys. Lett., Volume 94 (2009), p. 193501
[3] Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures, Phys. Rev. B, Volume 77 (2008), p. 052105
[4] Control analysis of the tunable phononic crystal with electrorheological material, Physica B, Volume 400 (2007), p. 137
[5] Tunable magnetoelastic phononic crystals, Appl. Phys. Lett., Volume 95 (2009), p. 124104
[6] Band gap tunability of magneto-elastic phononic crystal, J. Appl. Phys., Volume 111 (2012), p. 054901
[7] Attenuation and localization of wave propagation in rods with periodic shunted piezoelectric patches, Smart Mater. Struct., Volume 10 (2001), p. 979
[8] Low-frequency locally resonant band gaps induced by arrays of resonant shunts with Antoniou's circuit: experimental investigation on beams, Smart Mater. Struct., Volume 20 (2011), p. 015026
[9] Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials, J. Appl. Phys., Volume 112 (2012), p. 064902
[10] S. Degraeve, C. Granger, B. Dubus, J.O. Vasseur, A.-C. Hladky, M. Pham-Thi, Contrôle électrique de la propagation d'ondes élastiques dans des cristaux phononiques piézoélectriques (Electric control of the propagation of elastic waves in the piezoelectric phononic crystals), in: 21e Congrès Français de Mḿecanique Bordeaux, 26–30 August 2013, http://documents.irevues.inist.fr/handle/2042/52155 (in French).
[11] Bragg band gaps tunability in an homogeneous piezoelectric rod with periodic electrical boundary conditions, J. Appl. Phys., Volume 114 (2014), p. 194508
[12] Tunable effective constants of the one-dimensional piezoelectric phononic crystal with internal connected electrodes, J. Acoust. Soc. Amer., Volume 137 (2015), pp. 606-616
[13] Quasistatic stopband in the spectrum of one-dimensional piezoelectric phononic crystal, 2014 (open access) | arXiv
[14] Tunability of a one-dimensional elastic/piezoelectric phononic crystal using external capacitances, Acta Acust. Acust., Volume 101 (2015), pp. 494-501
[15] Measurement and simulation of a CMOS current conveyor negative capacitor for metamaterials, 13–16 March 2014, Lexington, KY, USA, IEEE (2014), pp. 1-5
[16] Current Conveyors: Variants, Applications and Hardware Implementations, Springer, Cham, Heidelberg, New York, Dordrecht, London, 2015
[17] Band gap control of phononic beam with negative capacitance piezoelectric shunt, Chin. Phys. B, Volume 20 (2011), p. 014301
[18] Experimental analysis of a cantilever beam with a shunted piezoelectric periodic array, J. Intell. Mater. Syst. Struct., Volume 22 (2011), pp. 1177-1187
[19] Band gap control in an active elastic metamaterial with negative capacitance piezoelectric shunting, J. Vib. Acoust., Volume 136 (2014), p. 061008
[20] Sound transmission loss of metamaterial thin plates with periodic subwavelength arrays of shunted piezoelectric patches, J. Sound Vib., Volume 343 (2015), pp. 104-120
[21] General one-dimensional treatment of the layered piezoelectric resonator with two electrodes, J. Acoust. Soc. Amer., Volume 82 (1987), pp. 513-521
[22] Spectral properties of a 2D scalar wave equation with 1D periodic coefficients: application to shear horizontal elastic waves, Math. Mech. Solids, Volume 18 (2013), pp. 677-700
[23] Acoustic Fields and Waves in Solids, Vol. 2, Wiley, 1973
Cited by Sources:
Comments - Policy