Comptes Rendus
Quasistatic stopband and other unusual features of the spectrum of a one-dimensional piezoelectric phononic crystal controlled by negative capacitance
Comptes Rendus. Mécanique, Volume 343 (2015) no. 12, pp. 680-688.

Normal propagation of the longitudinal wave through the piezoelectric medium with periodically embedded electrodes is considered. Each pair of electrodes is connected via a circuit with capacitance C. The paper analyzes in detail the unusual features of the dispersion spectrum ω(KT) (K is the Floquet–Bloch wavenumber, T is the period) arising in the special case of a negative value of C. The solution of the dispersion equation shows explicitly the evolution of the passbands and stopbands tunable by varying C<0. One of the striking features is the existence of the poles of ImKT (infinite attenuation) and of the corresponding jumps of the phase ReKT from 0 to π in the stopbands for a certain range (C0,C1) of negative C. Besides, for C(C0,C) where C<C1, the spectrum possesses a low-frequency absolute stopband starting from the quasistatic limit ω=0 and including the tunable pole of ImKT inside. This stopband is related to the negative value of the quasistatic effective elastic constant in the range (C0,C). At C=C, the effective constant is infinite while the spectrum degenerates to the straight line K=0 at any ω. For C close to C, the spectrum consists of the branches with high group velocity and of the quasiflat branches.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2015.07.005
Keywords: Tunable phononic crystals, Piezoelectric structures, Electric control, Negative capacitance, Quasistatic stopband

Anton A. Kutsenko 1, 2; Alexander L. Shuvalov 1, 2; Olivier Poncelet 1, 2; Alexander N. Darinskii 3

1 Univ. Bordeaux, I2M-APY, UMR 5295, 33405 Talence, France
2 CNRS, I2M-APY, UMR 5295, 33405 Talence, France
3 Institute of Crystallography RAS, 119333 Moscow, Russia
@article{CRMECA_2015__343_12_680_0,
     author = {Anton A. Kutsenko and Alexander L. Shuvalov and Olivier Poncelet and Alexander N. Darinskii},
     title = {Quasistatic stopband and other unusual features of the spectrum of a one-dimensional piezoelectric phononic crystal controlled by negative capacitance},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {680--688},
     publisher = {Elsevier},
     volume = {343},
     number = {12},
     year = {2015},
     doi = {10.1016/j.crme.2015.07.005},
     language = {en},
}
TY  - JOUR
AU  - Anton A. Kutsenko
AU  - Alexander L. Shuvalov
AU  - Olivier Poncelet
AU  - Alexander N. Darinskii
TI  - Quasistatic stopband and other unusual features of the spectrum of a one-dimensional piezoelectric phononic crystal controlled by negative capacitance
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 680
EP  - 688
VL  - 343
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2015.07.005
LA  - en
ID  - CRMECA_2015__343_12_680_0
ER  - 
%0 Journal Article
%A Anton A. Kutsenko
%A Alexander L. Shuvalov
%A Olivier Poncelet
%A Alexander N. Darinskii
%T Quasistatic stopband and other unusual features of the spectrum of a one-dimensional piezoelectric phononic crystal controlled by negative capacitance
%J Comptes Rendus. Mécanique
%D 2015
%P 680-688
%V 343
%N 12
%I Elsevier
%R 10.1016/j.crme.2015.07.005
%G en
%F CRMECA_2015__343_12_680_0
Anton A. Kutsenko; Alexander L. Shuvalov; Olivier Poncelet; Alexander N. Darinskii. Quasistatic stopband and other unusual features of the spectrum of a one-dimensional piezoelectric phononic crystal controlled by negative capacitance. Comptes Rendus. Mécanique, Volume 343 (2015) no. 12, pp. 680-688. doi : 10.1016/j.crme.2015.07.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.07.005/

[1] Acoustic Metamaterials and Phononic Crystals (P.A. Deymier, ed.), Springer Series in Solid-State Sciences, vol. 173, Springer, Berlin, 2013 (Chap. 8)

[2] K.L. Jim; C.W. Leung; S.T. Lau; S.H. Choy; H.L.W. Chan Thermal tuning of phononic bandstructure in ferroelectric ceramic/epoxy phononic crystal, Appl. Phys. Lett., Volume 94 (2009), p. 193501

[3] K. Bertoldi; M.C. Boyce Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures, Phys. Rev. B, Volume 77 (2008), p. 052105

[4] J.-Y. Yeh Control analysis of the tunable phononic crystal with electrorheological material, Physica B, Volume 400 (2007), p. 137

[5] J.-F. Robillard; O. Bou Matar; J.O. Vasseur; P.A. Deymier; M. Stippinger; A.-C. Hladky-Hennion; Y. Pennec; B. Djafari-Rouhani Tunable magnetoelastic phononic crystals, Appl. Phys. Lett., Volume 95 (2009), p. 124104

[6] O. Bou Matar; J.-F. Robillard; J.O. Vasseur; A.-C. Hladky-Hennion; P.A. Deymier; P. Pernod; V. Preobrazhensky Band gap tunability of magneto-elastic phononic crystal, J. Appl. Phys., Volume 111 (2012), p. 054901

[7] O. Thorp; M. Ruzzene; A. Baz Attenuation and localization of wave propagation in rods with periodic shunted piezoelectric patches, Smart Mater. Struct., Volume 10 (2001), p. 979

[8] G. Wang; S. Chen; J. Wen Low-frequency locally resonant band gaps induced by arrays of resonant shunts with Antoniou's circuit: experimental investigation on beams, Smart Mater. Struct., Volume 20 (2011), p. 015026

[9] F. Casadei; T. Delpero; A. Bergamini; P. Ermanni; M. Ruzzene Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials, J. Appl. Phys., Volume 112 (2012), p. 064902

[10] S. Degraeve, C. Granger, B. Dubus, J.O. Vasseur, A.-C. Hladky, M. Pham-Thi, Contrôle électrique de la propagation d'ondes élastiques dans des cristaux phononiques piézoélectriques (Electric control of the propagation of elastic waves in the piezoelectric phononic crystals), in: 21e Congrès Français de Mḿecanique Bordeaux, 26–30 August 2013, http://documents.irevues.inist.fr/handle/2042/52155 (in French).

[11] S. Degraeve; C. Granger; B. Dubus; J.O. Vasseur; M. Pham Thi; A.-C. Hladky-Hennion Bragg band gaps tunability in an homogeneous piezoelectric rod with periodic electrical boundary conditions, J. Appl. Phys., Volume 114 (2014), p. 194508

[12] A.A. Kutsenko; A.L. Shuvalov; O. Poncelet; A.N. Darinskii Tunable effective constants of the one-dimensional piezoelectric phononic crystal with internal connected electrodes, J. Acoust. Soc. Amer., Volume 137 (2015), pp. 606-616

[13] A.A. Kutsenko; A.L. Shuvalov; O. Poncelet; A.N. Darinskii Quasistatic stopband in the spectrum of one-dimensional piezoelectric phononic crystal, 2014 (open access) | arXiv

[14] S. Degraeve; C. Granger; B. Dubus; J.O. Vasseur; M. Pham-Thi; A.-C. Hladky Tunability of a one-dimensional elastic/piezoelectric phononic crystal using external capacitances, Acta Acust. Acust., Volume 101 (2015), pp. 494-501

[15] V.S. Kshatri; J.M.C. Covington; K.L. Smith; J.W. Shehan; T.P. Weldon; R.S. Adams Measurement and simulation of a CMOS current conveyor negative capacitor for metamaterials, 13–16 March 2014, Lexington, KY, USA, IEEE (2014), pp. 1-5

[16] R. Senani; D.R. Bhaskar; A.K. Singh Current Conveyors: Variants, Applications and Hardware Implementations, Springer, Cham, Heidelberg, New York, Dordrecht, London, 2015

[17] S.-B. Chen; J.-H. Wen; D.-L. Yu; G. Wang; X.-S. Wen Band gap control of phononic beam with negative capacitance piezoelectric shunt, Chin. Phys. B, Volume 20 (2011), p. 014301

[18] B.S. Beck; K.A. Cunefare; M. Ruzzene; M. Collet Experimental analysis of a cantilever beam with a shunted piezoelectric periodic array, J. Intell. Mater. Syst. Struct., Volume 22 (2011), pp. 1177-1187

[19] Y.Y. Chen; G.L. Huang; C.T. Sun Band gap control in an active elastic metamaterial with negative capacitance piezoelectric shunting, J. Vib. Acoust., Volume 136 (2014), p. 061008

[20] H. Zhang; J. Wen; Y. Xiao; G. Wang; X. Wen Sound transmission loss of metamaterial thin plates with periodic subwavelength arrays of shunted piezoelectric patches, J. Sound Vib., Volume 343 (2015), pp. 104-120

[21] H. Nowotny; E. Benes General one-dimensional treatment of the layered piezoelectric resonator with two electrodes, J. Acoust. Soc. Amer., Volume 82 (1987), pp. 513-521

[22] A.A. Kutsenko; A.L. Shuvalov; O. Poncelet; A.N. Norris Spectral properties of a 2D scalar wave equation with 1D periodic coefficients: application to shear horizontal elastic waves, Math. Mech. Solids, Volume 18 (2013), pp. 677-700

[23] B.A. Auld Acoustic Fields and Waves in Solids, Vol. 2, Wiley, 1973

Cited by Sources:

Comments - Policy