Normal propagation of the longitudinal wave through the piezoelectric medium with periodically embedded electrodes is considered. Each pair of electrodes is connected via a circuit with capacitance C. The paper analyzes in detail the unusual features of the dispersion spectrum
Accepté le :
Publié le :
Anton A. Kutsenko 1, 2 ; Alexander L. Shuvalov 1, 2 ; Olivier Poncelet 1, 2 ; Alexander N. Darinskii 3
@article{CRMECA_2015__343_12_680_0, author = {Anton A. Kutsenko and Alexander L. Shuvalov and Olivier Poncelet and Alexander N. Darinskii}, title = {Quasistatic stopband and other unusual features of the spectrum of a one-dimensional piezoelectric phononic crystal controlled by negative capacitance}, journal = {Comptes Rendus. M\'ecanique}, pages = {680--688}, publisher = {Elsevier}, volume = {343}, number = {12}, year = {2015}, doi = {10.1016/j.crme.2015.07.005}, language = {en}, }
TY - JOUR AU - Anton A. Kutsenko AU - Alexander L. Shuvalov AU - Olivier Poncelet AU - Alexander N. Darinskii TI - Quasistatic stopband and other unusual features of the spectrum of a one-dimensional piezoelectric phononic crystal controlled by negative capacitance JO - Comptes Rendus. Mécanique PY - 2015 SP - 680 EP - 688 VL - 343 IS - 12 PB - Elsevier DO - 10.1016/j.crme.2015.07.005 LA - en ID - CRMECA_2015__343_12_680_0 ER -
%0 Journal Article %A Anton A. Kutsenko %A Alexander L. Shuvalov %A Olivier Poncelet %A Alexander N. Darinskii %T Quasistatic stopband and other unusual features of the spectrum of a one-dimensional piezoelectric phononic crystal controlled by negative capacitance %J Comptes Rendus. Mécanique %D 2015 %P 680-688 %V 343 %N 12 %I Elsevier %R 10.1016/j.crme.2015.07.005 %G en %F CRMECA_2015__343_12_680_0
Anton A. Kutsenko; Alexander L. Shuvalov; Olivier Poncelet; Alexander N. Darinskii. Quasistatic stopband and other unusual features of the spectrum of a one-dimensional piezoelectric phononic crystal controlled by negative capacitance. Comptes Rendus. Mécanique, Acoustic metamaterials and phononic crystals, Volume 343 (2015) no. 12, pp. 680-688. doi : 10.1016/j.crme.2015.07.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.07.005/
[1] Acoustic Metamaterials and Phononic Crystals (P.A. Deymier, ed.), Springer Series in Solid-State Sciences, vol. 173, Springer, Berlin, 2013 (Chap. 8)
[2] Thermal tuning of phononic bandstructure in ferroelectric ceramic/epoxy phononic crystal, Appl. Phys. Lett., Volume 94 (2009), p. 193501
[3] Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures, Phys. Rev. B, Volume 77 (2008), p. 052105
[4] Control analysis of the tunable phononic crystal with electrorheological material, Physica B, Volume 400 (2007), p. 137
[5] Tunable magnetoelastic phononic crystals, Appl. Phys. Lett., Volume 95 (2009), p. 124104
[6] Band gap tunability of magneto-elastic phononic crystal, J. Appl. Phys., Volume 111 (2012), p. 054901
[7] Attenuation and localization of wave propagation in rods with periodic shunted piezoelectric patches, Smart Mater. Struct., Volume 10 (2001), p. 979
[8] Low-frequency locally resonant band gaps induced by arrays of resonant shunts with Antoniou's circuit: experimental investigation on beams, Smart Mater. Struct., Volume 20 (2011), p. 015026
[9] Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials, J. Appl. Phys., Volume 112 (2012), p. 064902
[10] S. Degraeve, C. Granger, B. Dubus, J.O. Vasseur, A.-C. Hladky, M. Pham-Thi, Contrôle électrique de la propagation d'ondes élastiques dans des cristaux phononiques piézoélectriques (Electric control of the propagation of elastic waves in the piezoelectric phononic crystals), in: 21e Congrès Français de Mḿecanique Bordeaux, 26–30 August 2013, http://documents.irevues.inist.fr/handle/2042/52155 (in French).
[11] Bragg band gaps tunability in an homogeneous piezoelectric rod with periodic electrical boundary conditions, J. Appl. Phys., Volume 114 (2014), p. 194508
[12] Tunable effective constants of the one-dimensional piezoelectric phononic crystal with internal connected electrodes, J. Acoust. Soc. Amer., Volume 137 (2015), pp. 606-616
[13] Quasistatic stopband in the spectrum of one-dimensional piezoelectric phononic crystal, 2014 (open access) | arXiv
[14] Tunability of a one-dimensional elastic/piezoelectric phononic crystal using external capacitances, Acta Acust. Acust., Volume 101 (2015), pp. 494-501
[15] Measurement and simulation of a CMOS current conveyor negative capacitor for metamaterials, 13–16 March 2014, Lexington, KY, USA, IEEE (2014), pp. 1-5
[16] Current Conveyors: Variants, Applications and Hardware Implementations, Springer, Cham, Heidelberg, New York, Dordrecht, London, 2015
[17] Band gap control of phononic beam with negative capacitance piezoelectric shunt, Chin. Phys. B, Volume 20 (2011), p. 014301
[18] Experimental analysis of a cantilever beam with a shunted piezoelectric periodic array, J. Intell. Mater. Syst. Struct., Volume 22 (2011), pp. 1177-1187
[19] Band gap control in an active elastic metamaterial with negative capacitance piezoelectric shunting, J. Vib. Acoust., Volume 136 (2014), p. 061008
[20] Sound transmission loss of metamaterial thin plates with periodic subwavelength arrays of shunted piezoelectric patches, J. Sound Vib., Volume 343 (2015), pp. 104-120
[21] General one-dimensional treatment of the layered piezoelectric resonator with two electrodes, J. Acoust. Soc. Amer., Volume 82 (1987), pp. 513-521
[22] Spectral properties of a 2D scalar wave equation with 1D periodic coefficients: application to shear horizontal elastic waves, Math. Mech. Solids, Volume 18 (2013), pp. 677-700
[23] Acoustic Fields and Waves in Solids, Vol. 2, Wiley, 1973
Cité par Sources :
Commentaires - Politique