Comptes Rendus
Sound absorption by subwavelength membrane structures: A geometric perspective
Comptes Rendus. Mécanique, Volume 343 (2015) no. 12, pp. 635-644.

Decorated membranes comprising a thin layer of elastic film with small rigid platelets fixed on top have been found to be efficient absorbers of low-frequency sound. In this work we consider the problem of sound absorption from a perspective aimed at deriving upper bounds under different scenarios, i.e., whether the sound is incident from one side only or from both sides, and whether there is a reflecting surface on the back side of the membrane. By considering the negligible thickness of the membrane, usually on the order of a fraction of one millimeter, we derive a relation showing that the sum of the incoming sound waves' (complex) pressure amplitudes, averaged over the area of the membrane, must be equal to that of the outgoing waves. By using this relation, and without going to any details of the wave solutions, it is shown that the maximum absorption achievable from one-sided incidence is 50%, while the maximum absorption with a back-reflecting surface can reach 100%. The latter was attained by the hybridized resonances. All the results are shown to be in excellent agreement with the experiments. This generalized perspective, when used together with the Green function's formalism, can be useful in gaining insights into the constraints on what are achievable in scatterings and absorption by thin film structures and delineating them.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2015.06.008
Keywords: Metamaterials, Decorated membrane resonator, Low-frequency sounds absorption, Conservation of mean complex pressure amplitudes, Thin film absorption limit, Hybrid resonances, Metasurface, Subwavelength total absorption

Min Yang 1; Yong Li 1; Chong Meng 1; Caixing Fu 1; Jun Mei 2; Zhiyu Yang 1; Ping Sheng 1

1 Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
2 Department of Physics, South China University of Technology, Guangzhou 510640, China
@article{CRMECA_2015__343_12_635_0,
     author = {Min Yang and Yong Li and Chong Meng and Caixing Fu and Jun Mei and Zhiyu Yang and Ping Sheng},
     title = {Sound absorption by subwavelength membrane structures: {A} geometric perspective},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {635--644},
     publisher = {Elsevier},
     volume = {343},
     number = {12},
     year = {2015},
     doi = {10.1016/j.crme.2015.06.008},
     language = {en},
}
TY  - JOUR
AU  - Min Yang
AU  - Yong Li
AU  - Chong Meng
AU  - Caixing Fu
AU  - Jun Mei
AU  - Zhiyu Yang
AU  - Ping Sheng
TI  - Sound absorption by subwavelength membrane structures: A geometric perspective
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 635
EP  - 644
VL  - 343
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2015.06.008
LA  - en
ID  - CRMECA_2015__343_12_635_0
ER  - 
%0 Journal Article
%A Min Yang
%A Yong Li
%A Chong Meng
%A Caixing Fu
%A Jun Mei
%A Zhiyu Yang
%A Ping Sheng
%T Sound absorption by subwavelength membrane structures: A geometric perspective
%J Comptes Rendus. Mécanique
%D 2015
%P 635-644
%V 343
%N 12
%I Elsevier
%R 10.1016/j.crme.2015.06.008
%G en
%F CRMECA_2015__343_12_635_0
Min Yang; Yong Li; Chong Meng; Caixing Fu; Jun Mei; Zhiyu Yang; Ping Sheng. Sound absorption by subwavelength membrane structures: A geometric perspective. Comptes Rendus. Mécanique, Volume 343 (2015) no. 12, pp. 635-644. doi : 10.1016/j.crme.2015.06.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.06.008/

[1] J.P. Arenas; M.J. Crocker Sound Vib., 44 (2010), p. 12

[2] H.V. Fuchs; X. Zha Acta Acust. Acust., 92 (2006), p. 139

[3] Z. Yang; J. Mei; M. Yang; N. Chan; P. Sheng Phys. Rev. Lett., 101 (2008), p. 204301

[4] Z. Yang; H. Dai; N. Chan; G. Ma; P. Sheng Appl. Phys. Lett., 96 (2010), p. 041906

[5] C.J. Naify; C.-M. Chang; G. McKnight; S. Nutt J. Appl. Phys., 110 (2011), p. 124903

[6] G. Ma; M. Yang; Z. Yang; P. Sheng Appl. Phys. Lett., 103 (2013), p. 011903

[7] Y. Chen; G. Huang; X. Zhou; G. Hu; C.-T. Sun J. Acoust. Soc. Am., 136 (2014), p. 969

[8] J.J. Park; K. Lee; O.B. Wright; M.K. Jung; S.H. Lee Phys. Rev. Lett., 110 (2013), p. 244302

[9] S.H. Lee; C.M. Park; Y.M. Seo; C.K. Kim Phys. Rev. B, 81 (2010), p. 241102

[10] C.M. Park; J.J. Park; S.H. Lee; Y.M. Seo; C.K. Kim; S.H. Lee Phys. Rev. Lett., 107 (2011), p. 194301

[11] S.H. Lee; C.M. Park; Y.M. Seo; Z.G. Wang; C.K. Kim Phys. Lett. A, 373 (2009), p. 4464

[12] S.H. Lee; C.M. Park; Y.M. Seo; Z.G. Wang; C.K. Kim Phys. Rev. Lett., 104 (2010), p. 054301

[13] M. Yang; G. Ma; Z. Yang; P. Sheng Phys. Rev. Lett., 110 (2013), p. 134301

[14] J. Mei; G. Ma; M. Yang; Z. Yang; W. Wen; P. Sheng Nat. Commun., 3 (2012), p. 756

[15] Y. Chen; G. Huang; X. Zhou; G. Hu; C.-T. Sun J. Acoust. Soc. Am., 136 (2014), p. 2926

[16] J. de Rosny; M. Fink Phys. Rev. Lett., 89 (2002), p. 124301

[17] A. Derode; P. Roux; M. Fink Phys. Rev. Lett., 75 (1995), p. 4206

[18] G. Ma; M. Yang; S. Xiao; Z. Yang; P. Sheng Nat. Mater., 13 (2014), p. 873

[19] Y. Chong; L. Ge; H. Cao; A.D. Stone Phys. Rev. Lett., 105 (2010), p. 053901

[20] P. Wei; C. Croënne; S.T. Chu; J. Li Appl. Phys. Lett., 104 (2014), p. 121902

[21] J. Song; P. Bai; Z. Hang; Y. Lai New J. Phys., 16 (2014), p. 033026

[22] L. Landau; E. Lifshitz, Pergamon Press (1970), p. 255 (Chap. 8)

[23] M. Yang; G. Ma; Y. Wu; Z. Yang; P. Sheng Phys. Rev. B, 89 (2014), p. 064309

[24] L. Landau; E. Lifshitz, Pergamon Press (1970), p. 153 (Chap. 5)

[25] R. Godwin Phys. Rev. Lett., 28 (1972), p. 85

[26] J. Freidberg; R. Mitchell; R.L. Morse; L. Rudsinski Phys. Rev. Lett., 28 (1972), p. 795

[27] J. Kindel; K. Lee; E. Lindman Phys. Rev. Lett., 34 (1975), p. 134

[28] P.M. Morse; K.U. Ingard Theoretical Acoustics, Princeton University Press, Princeton, NJ, USA, 1986

Cited by Sources:

Comments - Policy