Comptes Rendus
The inertial power and inertial force of robotic and natural bat wing
Comptes Rendus. Mécanique, Volume 344 (2016) no. 3, pp. 195-207.

Based on the acquired length and angle data of bat skeletons, a four-degree freedom robotic bat wing and an identical computational model with flap, sweep, elbow and wrist motions were presented. By considering the digits motions, a biomimetic bat skeleton model with seven-degree freedom was established as well. The effects of frequency, amplitude and downstroke ratio, as well as the components of inertial power and force on different directions, were studied. The experimental and computational results indicated that the inertial power and force accounted for the largest part on flap direction, the wing fold during upstroke could reduce the inertial power and force.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2015.11.002
Mots clés : Inertial power, Inertial force, Bat wing, Skeleton, Robotic bat, Computational model

Dongfu Yin 1 ; Zhisheng Zhang 1

1 School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
@article{CRMECA_2016__344_3_195_0,
     author = {Dongfu Yin and Zhisheng Zhang},
     title = {The inertial power and inertial force of robotic and natural bat wing},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {195--207},
     publisher = {Elsevier},
     volume = {344},
     number = {3},
     year = {2016},
     doi = {10.1016/j.crme.2015.11.002},
     language = {en},
}
TY  - JOUR
AU  - Dongfu Yin
AU  - Zhisheng Zhang
TI  - The inertial power and inertial force of robotic and natural bat wing
JO  - Comptes Rendus. Mécanique
PY  - 2016
SP  - 195
EP  - 207
VL  - 344
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2015.11.002
LA  - en
ID  - CRMECA_2016__344_3_195_0
ER  - 
%0 Journal Article
%A Dongfu Yin
%A Zhisheng Zhang
%T The inertial power and inertial force of robotic and natural bat wing
%J Comptes Rendus. Mécanique
%D 2016
%P 195-207
%V 344
%N 3
%I Elsevier
%R 10.1016/j.crme.2015.11.002
%G en
%F CRMECA_2016__344_3_195_0
Dongfu Yin; Zhisheng Zhang. The inertial power and inertial force of robotic and natural bat wing. Comptes Rendus. Mécanique, Volume 344 (2016) no. 3, pp. 195-207. doi : 10.1016/j.crme.2015.11.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.11.002/

[1] J. Colorado; C. Rossi; A. Barrientos; D. Patino The influence of bat wings for producing efficient net body forces in bio-inspired flapping robots, 2014 ICINCO, vol. 2, 2014, pp. 528-532

[2] J. Iriarte-Diaz; D.K. Riskin; D.J. Willis; K.S. Breuer; S.M. Swartz Whole-body kinematics of a fruit bat reveal the influence of wing inertia on body accelerations, J. Exp. Biol., Volume 214 (2011), pp. 1546-1553

[3] H.M. Papadimitriou; S.M. Swartz; T.H. Kunz Ontogenetic and anatomic variation in mineralization of the wing skeleton of the Mexican free-tailed bat, Tadarida brasiliensis, J. Zool., Volume 240 (1996), pp. 411-426

[4] M. Thollesson; U.M. Norberg Moments of inertia of bat wings and body, J. Exp. Biol., Volume 158 (1991), pp. 19-35

[5] U.M. Norberg; T.H. Kunz; J.F. Steffensen; Y. Winter; O. Vonhelversen The cost of hovering and forward flight in a nectar-feeding bat, Glossophaga soricina, estimated from aerodynamic theory, J. Exp. Biol., Volume 182 (1993), pp. 207-227

[6] D.K. Riskin; A. Bergou; K.S. Breuer; S.M. Swartz Upstroke wing flexion and the inertial cost of bat flight, Philos. Trans. R. Soc. Lond. B, Biol. Sci., Volume 279 (2012), pp. 2945-2950

[7] C. Vandenberg; J.M.V. Rayner The moment of inertia of bird wings and the inertial power requirement for flapping flight, J. Exp. Biol., Volume 198 (1995), pp. 1655-1664

[8] T.L. Hedrick; J.R. Usherwood; A.A. Biewener Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds, J. Exp. Biol., Volume 207 (2004), pp. 1689-1702

[9] T. Weis-Fogh Energetics of hovering flight in hummingbirds and in Drosophila, J. Exp. Biol., Volume 56 (1972), pp. 79-104

[10] U.M. Norberg Aerodynamics, kinematics, and energetics of horizontal flapping flight in the long-eared bat Plecotus auritus, J. Exp. Biol., Volume 65 (1976), pp. 179-212

[11] J. Colorado; A. Barrientos; C. Rossi; K.S. Breuer Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators, Bioinspir. & Biomim., Volume 7 (2012)

[12] G. Koekkoek; F.T. Muijres; L.C. Johansson; M. Stuiver; B.W. van Oudheusden; A. Hedenstrom Stroke plane angle controls leading edge vortex in a bat-inspired flapper, C. R., Méc., Volume 340 (2012), pp. 95-106

[13] J.W. Bahlman; S.M. Swartz; K.S. Breuer Design and characterization of a multi-articulated robotic bat wing, Bioinspir. & Biomim., Volume 8 (2013)

[14] P. Chen; S. Joshi; S.M. Swartz; K.S. Breuer; J.W. Bahlman; G.W. Reich Bat inspired flapping flight, 2014 (SciTech AIAA paper 1120)

[15] J.W. Bahlman; S.M. Swartz; K.S. Breuer How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing, Bioinspir. & Biomim., Volume 9 (2014)

[16] A.R. Ennos Inertial and aerodynamic torques on the wings of diptera in flight, J. Exp. Biol., Volume 142 (1989), pp. 87-95

[17] S.C. Burgess; R.J. Lock; J. Wang; G.D. Sattler; J.D. Oliver The effect of aerodynamic braking on the inertial power requirement of flapping flight: case study of a gull, Int. J. Micro Air Veh., Volume 6 (2014), pp. 117-127

[18] X.D. Tian; J. Iriarte-Diaz; K. Middleton; R. Galvao; E. Israeli; A. Roemer; A. Sullivan; A. Song; S. Swartz; K. Breuer Direct measurements of the kinematics and dynamics of bat flight, Bioinspir. & Biomim., Volume 1 (2006), p. S10-S18

[19] A.J. Bergou; S. Swartz; K. Breuer; G. Taubin 3D reconstruction of bat flight kinematics from sparse multiple views, 2011 ICCV Workshops, IEEE, 2011, pp. 1618-1625

[20] S.J. Agosta Habitat use, diet and roost selection by the Big Brown Bat (Eptesicus fuscus) in North America: a case for conserving an abundant species, Mamm. Rev., Volume 32 (2002), pp. 179-198

[21] R. von Busse; A. Hedenstrom; Y. Winter; L. Johansson Kinematics and wing shape across flight speed in the bat, Leptonycteris yerbabuenae, Biol. Open, Volume 1 (2012), pp. 1226-1238

[22] T. Hubel; D. Riskin; S. Swartz; K. Breuer Wake structure and wing kinematics: the flight of the lesser dog-faced fruit bat, Cynopterus brachyotis, J. Exp. Biol., Volume 213 (2010), pp. 3427-3440

[23] U. Norberg; Y. Winter Wing beat kinematics of a nectar-feeding bat, Glossophaga soricina, flying at different flight speeds and Strouhal numbers, J. 0Exp. Biol., Volume 209 (2006), pp. 3887-3897

Cité par Sources :

Commentaires - Politique