Comptes Rendus
Conception of a compact flow boiling loop for the International Space Station- First results in parabolic flights
Comptes Rendus. Mécanique, Volume 351 (2023) no. S2, pp. 199-218.

The design of a pipe flow boiling experiment for the International Space Station is proposed, taking into account typical weight, power consumption and size constraints. The effect of singularities such as elbows upstream the test section is investigated. Velocity profiles downstream two elbows, measured by Particle Image Velocimetry are in good agreement with numerical simulation and allow to determine a specific distance (decay length) downstream the elbows for which the velocity profile recover its axisymmetry. From these results a breadboard is designed and tested in parabolic flights. Care has been taken to generate boiling downstream the decay length. Two-phase bubbly flow is observed with 2 perpendicular high-speed cameras in the test section and a symmetry of the bubble distribution in the pipe is verified for different gravity conditions when the bubbles are created after the decay length.

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crmeca.147
Mots clés : Flow boiling, microgravity, Dean Vortex, Flow visualisation, bubbly flow
Paul Chorin 1 ; Antoine Boned 1 ; Julien Sebilleau 1 ; Catherine Colin 1 ; Olaf Schoele-Schulz 2 ; Nicola Picchi 3 ; Christian Schwarz 4 ; Balazs Toth 4 ; Daniele Mangini 5

1 Institut de Mécanique des Fluides de Toulouse - Université de Toulouse - CNRS-INPT-UPS, Allée Camille Soula - 31400 Toulouse - France
2 Airbus Defence and Space GmbH Claude-Dornier-Straße 88090- Immenstaad Germany
3 Airbus Defence and Space GmbH Claude-Dornier-Straße 88090 - Immenstaad Germany
4 European Space Agency ESTEC TEC-MMG Keplerlaan 1, PO Box 299 NL-2200 AG Noordwijk, The Netherlands
5 cosine Remote Sensing BV Warmonderweg 14, 2171 AH Sassenheim, The Netherlands
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2023__351_S2_199_0,
     author = {Paul Chorin and Antoine Boned and Julien Sebilleau and Catherine Colin and Olaf Schoele-Schulz and Nicola Picchi and Christian Schwarz and Balazs Toth and Daniele Mangini},
     title = {Conception of a compact flow boiling loop for the {International} {Space} {Station-} {First} results in parabolic flights},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {199--218},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     number = {S2},
     year = {2023},
     doi = {10.5802/crmeca.147},
     language = {en},
}
TY  - JOUR
AU  - Paul Chorin
AU  - Antoine Boned
AU  - Julien Sebilleau
AU  - Catherine Colin
AU  - Olaf Schoele-Schulz
AU  - Nicola Picchi
AU  - Christian Schwarz
AU  - Balazs Toth
AU  - Daniele Mangini
TI  - Conception of a compact flow boiling loop for the International Space Station- First results in parabolic flights
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 199
EP  - 218
VL  - 351
IS  - S2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.147
LA  - en
ID  - CRMECA_2023__351_S2_199_0
ER  - 
%0 Journal Article
%A Paul Chorin
%A Antoine Boned
%A Julien Sebilleau
%A Catherine Colin
%A Olaf Schoele-Schulz
%A Nicola Picchi
%A Christian Schwarz
%A Balazs Toth
%A Daniele Mangini
%T Conception of a compact flow boiling loop for the International Space Station- First results in parabolic flights
%J Comptes Rendus. Mécanique
%D 2023
%P 199-218
%V 351
%N S2
%I Académie des sciences, Paris
%R 10.5802/crmeca.147
%G en
%F CRMECA_2023__351_S2_199_0
Paul Chorin; Antoine Boned; Julien Sebilleau; Catherine Colin; Olaf Schoele-Schulz; Nicola Picchi; Christian Schwarz; Balazs Toth; Daniele Mangini. Conception of a compact flow boiling loop for the International Space Station- First results in parabolic flights. Comptes Rendus. Mécanique, Volume 351 (2023) no. S2, pp. 199-218. doi : 10.5802/crmeca.147. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.147/

[1] A. E. Dukler; J. A. Fabre; J. B. McQuillen; R. Vernon Gas-liquid flow at microgravity conditions: Flow patterns and their transitions, Int. J. Multiphase Flow, Volume 14 (1988) no. 4, pp. 389-400 | DOI

[2] Catherine Colin; J. A. Fabre; A. E. Dukler Gas-liquid flow at microgravity conditions–I. Dispersed bubble and slug flow, Int. J. Multiphase Flow, Volume 17 (1991) no. 4, pp. 533-544 | DOI | Zbl

[3] L. Zhao; K. S. Rezkallah Gas-liquid flow patterns at microgravity conditions, Int. J. Multiphase Flow, Volume 19 (1993) no. 5, pp. 751-763 | DOI | Zbl

[4] W. S. Bousman; J. B. McQuillen; L. C. Witte Gas-liquid flow patterns in microgravity: Effects of tube diameter, liquid viscosity and surface tension, Int. J. Multiphase Flow, Volume 22 (1996) no. 6, pp. 1035-1053 | DOI | Zbl

[5] Catherine Colin; J. A. Fabre; J. McQuillen Bubble and slug flow at microgravity conditions: state of knowledge and open questions, Chem. Eng. Commun., Volume 141-142 (1996) no. 1, pp. 155-173 | DOI

[6] K. S. Rezkallah Weber number based flow-pattern maps for liquid-gas flows at microgravity, Int. J. Multiphase Flow, Volume 22 (1996) no. 6, pp. 1265-1270 | DOI

[7] Jian-fu Zhao; J. C. Xie; H. Lin; W. R. Hu; A. V. Ivanov; A. Yu. Belyaev Experimental studies on two-phase flow patterns aboard the Mir space station, Int. J. Multiphase Flow, Volume 27 (2001) no. 11, pp. 1931-1944 | DOI | Zbl

[8] K. J. Elkow; K. S. Rezkallah Void fraction measurements in gas-liquid flow under 1g and μ conditions using capacitance sensors, Int. J. Multiphase Flow, Volume 23 (1997) no. 5, pp. 815-829 | DOI | Zbl

[9] L. Zhao; K. S. Rezkallah Pressure drop in gas-liquid flow at microgravity conditions, Int. J. Multiphase Flow, Volume 21 (1995) no. 5, pp. 837-849 | DOI | Zbl

[10] Ohta Haruhito Microgravity Heat Transfer in Flow Boiling, Advances in Heat Transfer, Volume 37, Elsevier, 2003, pp. 1-76 | DOI

[11] Hui Zhang; Issam Mudawar; Mohammad M. Hasan CHF model for subcooled flow boiling in Earth gravity and microgravity, Int. J. Heat Mass Transfer, Volume 50 (2007) no. 19-20, pp. 4039-4051 | DOI | Zbl

[12] Gian Piero Celata; Giuseppe Zummo Flow boiling heat transfer in microgravity: recent progress, Multiph. Sci. Technol., Volume 21 (2009) no. 3, pp. 187-212 | DOI

[13] Coen Baltis; Gian Piero Celata; Maurizio Cumo; Luca Saraceno; Giuseppe Zummo Gravity Influence on Heat Transfer Rate in Flow Boiling, Microgravity Sci. Technol., Volume 24 (2012) no. 3, pp. 203-213 | DOI

[14] Haruhito Ohta; S. Baba Boiling Experiments Under Microgravity Conditions, Exp. Heat Transf., Volume 26 (2013) no. 2-3, pp. 266-295 | DOI

[15] Marine Narcy; Erik de Malmazet; Catherine Colin Flow boiling in tube under normal gravity and microgravity conditions, Int. J. Multiphase Flow, Volume 60 (2014), pp. 50-63 | DOI

[16] Sébastien Luciani; David Brutin; Christophe Le Niliot; Ouamar Rahli; Lounès Tadrist Flow Boiling in Minichannels Under Normal, Hyper-, and Microgravity: Local Heat Transfer Analysis Using Inverse Methods, J. Heat Transfer, Volume 130 (2008) no. 10, 101502 | DOI

[17] Christopher Konishi; Hyoungsoon Lee; Issam Mudawar; Mohammad M. Hasan; Henry K. Nahra; Nancy R. Hall; James D. Wagner; Rochelle L. May; Jeffrey R. Mackey Flow boiling in microgravity: Part 2 – Critical heat flux interfacial behavior, experimental data, and model, Int. J. Heat Mass Transfer, Volume 81 (2015), pp. 721-736 | DOI

[18] Yonghai Zhang; Bin Liu; Jian-fu Zhao; Yueping Deng; Jinjia Wei Experimental Study of Subcooled Flow Boiling Heat Transfer on a Smooth Surface in Short-Term Microgravity, Microgravity Sci. Technol., Volume 30 (2018) no. 6, pp. 793-805 | DOI

[19] Michel T. Lebon; Caleb F. Hammer; Jungho Kim Gravity effects on subcooled flow boiling heat transfer, Int. J. Heat Mass Transfer, Volume 128 (2019), pp. 700-714 | DOI

[20] Michel T. Lebon; Caleb F. Hammer; Jungho Kim Using a modified single-phase model to predict microgravity flow boiling heat transfer in the bubbly flow regime, Exp. Heat Transf., Volume 34 (2021) no. 5, pp. 474-492 | DOI

[21] Jian-fu Zhao Two-phase flow and pool boiling heat transfer in microgravity, Int. J. Multiphase Flow, Volume 36 (2010) no. 2, pp. 135-143 | DOI

[22] Marine Narcy; Catherine Colin Two-phase flow in microgravity with and without phase change: recent progress and future prospects, Interfacial Phenom. Heat Transf., Volume 3 (2015) no. 1, pp. 1-17 | DOI

[23] Christopher Konishi; Issam Mudawar Review of flow boiling and critical heat flux in microgravity, Int. J. Heat Mass Transfer, Volume 80 (2015), pp. 469-493 | DOI

[24] Koichi Inoue; Haruhiko Ohta; Hitoshi Asano; Osamu Kawanami; Ryoji Imai; Koichi Suzuki; Yasuhisa Shinmoto; Takashi Kurimoto; Satoshi Matsumoto Heat Loss Analysis of Flow Boiling Experiments Onboard International Space Station with Unclear Thermal Environmental Conditions (2nd Report: Liquid-vapor Two-phase Flow Conditions at Test Section Inlet), Microgravity Sci. Technol., Volume 33 (2021) no. 5, 57 | DOI

[25] V. S. Devahdhanush; Steven J. Darges; Issam Mudawar; Henry K. Nahra; R. Balasubramaniam; Mohammad M. Hasan; Jeffrey R. Mackey Flow visualization, heat transfer, and critical heat flux of flow boiling in Earth gravity with saturated liquid-vapor mixture inlet conditions – In preparation for experiments onboard the International Space Station, Int. J. Heat Mass Transfer, Volume 192 (2022), 122890 | DOI

[26] Van P. Carey Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, CRC Press, 2018 | DOI

[27] W. R. Dean XVI. Note on the motion of fluid in a curved pipe, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Volume 4 (1927) no. 20, pp. 208-223 | DOI

[28] W. R. Dean; J. M. Hurst Note on the motion of fluid in a curved pipe, Mathematika, Volume 6 (1959) no. 1, pp. 77-85 | DOI | MR | Zbl

[29] S. A. Berger; L. Talbot; L. S. Yao Flow in Curved Pipes, Annu. Rev. Fluid Mech. (1983), pp. 461-512 | DOI | Zbl

[30] K. C. Cheng; F. P. Yuen Flow Visualization Studies on Secondary Flow Patterns in Straight Tubes Downstream of a 180 deg Bend and in Isothermally Heated Horizontal Tubes, J. Heat Transfer, Volume 109 (1987) no. 1, pp. 49-54 | DOI

[31] John A. Fairbank; Ronald M. C. So Upstream and downstream influence of pipe curvature on the flow through a bend, Int. J. Heat Fluid Flow, Volume 8 (1987) no. 3, pp. 211-217 | DOI

[32] Jesse T. Ault; Kevin K. Chen; Howard A. Stone Downstream decay of fully developed Dean flow, J. Fluid Mech., Volume 777 (2015), pp. 219-244 | DOI

[33] Asterios Pantokratoras Steady laminar flow in a 90° bend, Adv. Mech. Eng., Volume 8 (2016) no. 9, pp. 1-9 | DOI

[34] P. L. Spedding; E. Benard; G. M. Mcnally Fluid Flow through 90 Degree Bends, Dev. Chem. Eng. Mineral Process., Volume 12 (2004) no. 1-2, pp. 107-128 | DOI

[35] Konstantinos D. Arvanitis; Demetri Bouris; Elias Papanicolaou Laminar flow and heat transfer in U-bends: The effect of secondary flows in ducts with partial and full curvature, Int. J. Therm. Sci., Volume 130 (2018), pp. 70-93 | DOI

[36] P. H. M. Bovendeerd; A. A. Van Steenhoven; F. N. Van De Vosse; G. Vossers Steady entry flow in a curved pipe, J. Fluid Mech., Volume 177 (1987), pp. 233-246 | DOI

[37] R. Budwig Refractive index matching methods for liquid flow investigations, Exp. Fluids, Volume 17 (1994) no. 5, pp. 350-355 | DOI

[38] Yogesh K. Agrawal; Reza Sabbagh; Sean Sanders; David S. Nobes Measuring the Refractive Index, Density, Viscosity, pH, and Surface Tension of Potassium Thiocyanate (KSCN) Solutions for Refractive Index Matching in Flow Experiments, J. Chem. Eng. Data, Volume 63 (2018) no. 5, pp. 1275-1285 | DOI

[39] Paul Onubi Ayegba; Julien Sebilleau; Catherine Colin Hydrodynamics of vertical upward and downward flow boiling in a millimetric tube, Int. J. Multiphase Flow, Volume 153 (2022), 104120 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Nucleate pool boiling in microgravity: Recent progress and future prospects

Catherine Colin; Olivier Kannengieser; Wladimir Bergez; ...

C. R. Méca (2017)


Aqueous foams and foam films stabilised by surfactants. Gravity-free studies

Dominique Langevin

C. R. Méca (2017)


Aqueous foams in microgravity, measuring bubble sizes

Marina Pasquet; Nicolo Galvani; Olivier Pitois; ...

C. R. Méca (2023)