Comptes Rendus
Intermittency as a transition to turbulence in pipes: A long tradition from Reynolds to the 21st century
Comptes Rendus. Mécanique, Volume 345 (2017) no. 9, pp. 642-659.

Intermittencies are commonly observed in fluid mechanics, and particularly, in pipe flows. Initially observed by Reynolds (1883), it took one century for reaching a rather full understanding of this phenomenon whose irregular dynamics (apparently stochastic) puzzled hydrodynamicists for decades. In this brief (non-exhaustive) review, mostly focused on the experimental characterization of this transition between laminar and turbulent regimes, we present some key contributions for evidencing the two concomittant and antagonist processes that are involved in this complex transition and were suggested by Reynolds. It is also shown that a clear explicative model was provided, based on the nonlinear dynamical systems theory, the experimental observations in fluid mechanics only providing an applied example, due to its obvious generic nature.

Les intermittencies sont communément observées en mécanique des fluides et, plus particulièrement, dans les écoulements dans des conduites cylindriques. Initialement obervées par Reynolds en 1883, il a fallu un siècle pour parvenir à une compréhension plutôt complète de ce phénomène dont la dynamique irrégulière (apparemment stochastique) déconcerta les hydrodynamiciens durant plusieurs décades. Par cette brève revue (non exhaustive), essentiellement focalisée sur la caractérisation expérimentale de cette transition entre régimes laminaire et turbulent, nous présentons quelques contributions clés ayant conduit à mettre en évidence les deux processus concomittants et antagonistes impliqués et qui avaient déjà été suggérés par Reynolds. Il est également montré qu'un modèle explicatif clair fut proposé, sur la base de la théorie des systèmes dynamiques non linéaires, les observations expérimentales en mécanique des fluides ayant servi uniquement d'exemple, et ce en raison de son caractère générique évident.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2017.06.004
Keywords: Pipe flows, Laminar regime, Turbulence, Intermittency, Friction coefficient
Mot clés : Écoulement dans les conduites cylindriques, Régime laminaire, Turbulence, Intermittences, Coefficient de frottement

Christophe Letellier 1

1 Normandie Université, CORIA, avenue de l'Université, 76800 Saint-Étienne-du-Rouvray, France
@article{CRMECA_2017__345_9_642_0,
     author = {Christophe Letellier},
     title = {Intermittency as a transition to turbulence in pipes: {A} long tradition from {Reynolds} to the 21st century},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {642--659},
     publisher = {Elsevier},
     volume = {345},
     number = {9},
     year = {2017},
     doi = {10.1016/j.crme.2017.06.004},
     language = {en},
}
TY  - JOUR
AU  - Christophe Letellier
TI  - Intermittency as a transition to turbulence in pipes: A long tradition from Reynolds to the 21st century
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 642
EP  - 659
VL  - 345
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crme.2017.06.004
LA  - en
ID  - CRMECA_2017__345_9_642_0
ER  - 
%0 Journal Article
%A Christophe Letellier
%T Intermittency as a transition to turbulence in pipes: A long tradition from Reynolds to the 21st century
%J Comptes Rendus. Mécanique
%D 2017
%P 642-659
%V 345
%N 9
%I Elsevier
%R 10.1016/j.crme.2017.06.004
%G en
%F CRMECA_2017__345_9_642_0
Christophe Letellier. Intermittency as a transition to turbulence in pipes: A long tradition from Reynolds to the 21st century. Comptes Rendus. Mécanique, Volume 345 (2017) no. 9, pp. 642-659. doi : 10.1016/j.crme.2017.06.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.06.004/

[1] H. Poincaré Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Paris, 1899

[2] J.E. Barrow-Green Poincaré and the Three Body Problem, AMS and the London Mathematical Society, 1997

[3] M. Chapront-Touzé Progress in the analytical theories for the orbital motion of the Moon, Celest. Mech. Dyn. Astron., Volume 26 (1982), pp. 53-62

[4] C.-E. Delaunay Théorie du mouvement de la lune i, Mém. Acad. Sci., Volume 28 (1860), pp. 1-883

[5] C.-E. Delaunay Théorie du mouvement de la lune ii, Mém. Acad. Sci., Volume 29 (1867), pp. 1-931

[6] G.W. Hill Researches on the Lunar theory, Amer. J. Math., Volume 1 (1878), pp. 5-26

[7] E.W. Brown On the plans for new tables of the Moon's motion, Mon. Not. R. Astron. Soc., Volume 70 (1909), pp. 148-175

[8] J. Laskar Large scale chaos and marginal stability in the solar system, Celest. Mech. Dyn. Astron., Volume 64 (1996), pp. 115-162

[9] P.S. Laplace (1895), pp. 325-366

[10] P.S. Laplace (1895), pp. 49-92

[11] P.S. Laplace (1895), pp. 95-207

[12] U.-J-J. Le Verrier Recherches astronomiques: extrait des Annales de l'Observatoire de Paris, Tomes 1–14, Mallet-Bachelier, Paris, 1855–1878

[13] G.D. Birkhoff Dynamical Systems, American Mathematical Society, 1927

[14] V.I. Arnold; V.V. Kozlov; A.I. Neishtadt Mathematical Aspects of Classical and Celestial Mechanics, Springer-Verlag, New York, 1997

[15] E.N. Lorenz Deterministic nonperiodic flow, J. Atmos. Sci., Volume 20 (1963), pp. 130-141

[16] D. Barkley Theoretical perspective on the route to turbulence in a pipe, J. Fluid Mech., Volume 803 (2016), p. P1

[17] H. Darcy Recherches expérimentales relatives au mouvement de l'eau dans les tuyaux, Imprimerie impériale, Paris, 1857

[18] G.H.L. Hagen Über den Einfluss der Temperatur auf die Bewegung des Wassers in Röhren, Abh. Königl. Akad. Wiss. Berlin (1854), pp. 17-98

[19] O. Reynolds An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels, Philos. Trans. R. Soc. Lond., Volume 174 (1883), pp. 935-982

[20] A. Sommerfeld Ein Beitrag zur hydronimaschen Erklärung der turbulenten Flüssigkeitsbewegung, Roma, 6–11 April 1908, Volume vol. 3 (1908), pp. 116-124

[21] O. Reynolds On the dynamical theory of incompressible viscous fluids and the determination of the criterion, Philos. Trans. R. Soc. Lond. A, Volume 186 (1895), pp. 123-164

[22] M. Couette Distinction de deux régimes dans le mouvement des fluides, J. Phys. Théor. Appl., Volume 9 (1890), pp. 414-424

[23] M. Brillouin Leçons sur la viscosité des liquides et des gaz, Gauthier-Villars, Paris, 1907

[24] J. Weisbach Lehrbuch der Ingenieur- und Maschinen-Mechanik, Braunschweig, 1845

[25] A. Flamant Hydraulique, Ch. Béranger, Paris, 1900

[26] J.-L-M. Poiseuille Recherches expérimentales sur le mouvement des liquides dans les tubes de très petits diamètres, C. R. Acad. Sci. Paris, Volume 11 (1840), pp. 1041-1048

[27] E. Hagenbach-Bischoff Über die Bestimmung der Zäkigkeit einer Flüsigkeit durch den Aushluß aus Röhren, Ann. Phys., Volume 185 (1860), pp. 385-426

[28] G.H.L. Hagen Über die Bewegung des Wassers in engen cylindrischen Röhren, Ann. Phys., Volume 122 (1839), pp. 423-442

[29] P. Steen; W. Brutsaert Saph and Schoder and the friction law of Blasius, Annu. Rev. Fluid Mech., Volume 49 (2017), pp. 575-582

[30] A.V. Saph; E.W. Schoder An experimental study of the resistances to the flow of water in pipes, Trans. Amer. Soc. Civ. Eng., Volume 51 (1903), pp. 253-272

[31] H. Blasius Das Aehnlichketsgesetz bei Reubungsvorgängen, Z. Ver. Dtsch. Ing., Volume 56 (1912), pp. 639-643

[32] W.H. Hager Blasius: a life in research and education, Exp. Fluids, Volume 34 (2003), pp. 566-571

[33] O. Darrigol Worlds of Flow: A History of Hydrodynamics from the Bernoullis to Prandtl, Springer, New York, 2005

[34] W. Ruckes Untersuchungen über den Ausfluß komprimierter Luft aus Kapillaren und die dabei auftretenden Turbulenzerscheinungen, Ann. Phys., Volume 330 (1908), pp. 983-1021

[35] V.W. Ekman On the change from steady to turbulent motion of liquids, Ark. Mat. Astron. Fys., Volume 6 (1911), p. 5

[36] L. Schiller Experimentelle Untersuchungen zum Turbulenzproblem, Z. Angew. Math. Mech., Volume 1 (1921), pp. 436-444

[37] E.R. Lindgren Note on the flow of liquids in tubes, Appl. Sci. Res. A, Volume 4 (1954), pp. 313-316

[38] H.T. Barnes; E.G. Coker The flow of water through pipes – Experiments on stream-line motion and the measurement of critical velocity, Proc. R. Soc. Lond., Volume 74 ( 1904–1905 ), pp. 341-356

[39] S. Corrsin Investigation of Flow in an Axially Symmetrical Heated Jet of Air, 1943 (NACA Advance Confidential Report 3L23)

[40] L.A. Sackmann Sur les changements de régime dans les canalisations: mesures instantanées des caractéristiques, C. R. Acad. Sci. Paris, Volume 224 (1947), pp. 793-795

[41] L.A. Sackmann; F. Codaccioni Sur les changements de régime dans les canalisations: étude sélective de la perte de charge, C. R. Acad. Sci. Paris, Volume 224 (1947), pp. 1326-1328

[42] L.A. Sackmann Sur les changements de régime dans les canalisations: étude statistique de la transition, C. R. Acad. Sci. Paris, Volume 226 (1948), pp. 1887-1889

[43] L.A. Sackmann Sur les changements de régime dans les canalisations: étude cinématographique de la transition, C. R. Acad. Sci. Paris, Volume 239 (1954), pp. 220-222

[44] J. Rotta Experimenteller Beitrag zur Entstehung turbulenter Strömung im Rohr, Ing.-Arch., Volume 24 (1956), pp. 258-281

[45] O.K.G. Tietjens Hydro- und Aeromechanik nach Vorlesungen von L. Prandtl II. Bewegung reibender Flüssigkeiten und technische Anwendungen, Springer, Berlin, 1931

[46] H.W. Liepmann Free turbulent flows, Marseille, 28 August–2 September 1961 (Colloques internationaux du CNRS), Volume vol. 108 (1962), pp. 211-227

[47] A.A. Townsend The Structure of Turbulent Shear Flow, Cambridge University Press, 1956

[48] D. Coles Interfaces and intermittency in turbulent shear flow, Marseille, 28 August–2 September 1961 (Colloques internationaux du CNRS), Volume vol. 108 (1962), pp. 228-250

[49] I.J. Wygnanski; F.H. Champagne On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug, J. Fluid Mech., Volume 59 (1973), pp. 281-335

[50] K. Avila; D. Moxey; A. de Locar; M. Avila; D. Barkley; B. Hof The onset of turbulence in pipe flow, Science, Volume 333 (2011), pp. 192-196

[51] Y. Pomeau Front motion, metastability and subcritical bifurcations in hydrodynamics, Physica D, Volume 23 (1986), pp. 3-11

[52] K. Kaneko Spatiotemporal intermittency in coupled map lattices, Prog. Theor. Phys., Volume 74 (1985), pp. 1033-1044

[53] H. Chaté; P. Manneville Transition to turbulence via spatio-temporal intermittency, Phys. Rev. Lett., Volume 58 (1988), p. 112

[54] P. Bergé; M. Dubois Rayleigh–Bénard convection, Contemp. Phys., Volume 25 (1984), pp. 535-582

[55] I. Tani History of boundary layer theory, Annu. Rev. Fluid Mech., Volume 9 (1977), pp. 87-111

[56] B.B. Mandelbrot Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier, J. Fluid Mech., Volume 62 (1974), pp. 331-358

[57] L.D. Landau Sur le problème de la turbulence (en russe), Dokl. Akad. Nauk SSSR, Volume 44 (1944), pp. 339-342

[58] E. Hopf A mathematical example displaying the features of turbulence, Commun. Pure Appl. Math., Volume 1 (1948), pp. 303-322

[59] S. Smale Differentiable dynamical systems. I. Diffeomorphisms, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 747-817

[60] D. Ruelle; F. Takens On the nature of turbulence, Commun. Math. Phys., Volume 20 (1971), pp. 167-192

[61] E.N. Lorenz The Essence of Chaos, University of Washington Press, 1993

[62] J.P. Gollub; H.L. Swinney Onset of turbulence in a rotating fluid, Phys. Rev. Lett., Volume 35 (1975), pp. 927-930

[63] R. May Deterministic models with chaotic dynamics, Nature, Volume 256 (1975), pp. 165-166

[64] O.E. Rössler Chaotic behavior in simple reaction system, Z. Naturforsch. A, Volume 31 (1976), pp. 259-264

[65] J. Guckenheimer; G.F. Oster; A. Ipatchki Periodic solutions of a logistic difference equation, J. Math. Biol., Volume 4 (1977), pp. 101-147

[66] P. Coullet; Y. Pomeau History of chaos from a French perspective (C. Skiadas, ed.), The Foundations of Chaos Revisited: From Poincaré to Recent Advancements, Springer-Verlag, 2015, pp. 91-101

[67] P. Manneville; Y. Pomeau Intermittency and the Lorenz model, Phys. Lett. A, Volume 75 (1979), pp. 1-2

[68] J.-L. Ibañez; Y. Pomeau A simple case of non-periodic (strange) attractor, J. Non-Equilib. Thermodyn., Volume 3 (1978), pp. 135-151

[69] N. Morioka; T. Shimizu Transition between turbulent and periodic states in the Lorenz model, Phys. Lett. A, Volume 66 (1978), pp. 447-449

[70] Y. Pomeau; P. Manneville Intermittency: a generic phenomenon at the onset of turbulence, Cargèse, 17–23 June 1979 (G. Laval; D. Gresillon, eds.) (1979), pp. 329-340

[71] D.J. Tritton Physical Fluid Dynamics, Van Nostrand Reinhold, New York, 1977

[72] J. Maurer; A. Libchaber Effect of the Prandtl number on the onset of turbulence in liquid 4He, J. Phys. Lett.–Paris, Volume 41 (1980), pp. 515-518

[73] Y. Pomeau; P. Manneville Intermittent transition to turbulence in dissipative dynamical systems, Commun. Math. Phys., Volume 74 (1980), pp. 189-197

[74] J. San-Martin; J.C. Antoranz Transition to chaos via type-II intermittency with saturable absorbed externally excited, Prog. Theor. Phys., Volume 94 (1995), pp. 535-542

[75] J.-Y. Huang; J.-J. Kim Type-II intermittency in a coupled nonlinear oscillator: experimental observation, Phys. Rev. A, Volume 3 (1987), pp. 1495-1497

[76] P. Bergé; M. Dubois; P. Manneville; Y. Pomeau Intermittency in Rayleigh–Bénard convection, J. Phys. Lett.–Paris, Volume 41 (1980) (L-341–345)

[77] J. Gollub; S.V. Benson Many routes to turbulent convection, J. Fluid Mech., Volume 100 (1980), pp. 449-470

Cited by Sources:

Comments - Policy