Comptes Rendus
On the developments of Darcy's law to include inertial and slip effects
Comptes Rendus. Mécanique, Volume 345 (2017) no. 9, pp. 660-669.

The empirical Darcy law describing flow in porous media, whose convincing theoretical justification was proposed almost 130 years after its original publication in 1856, has however been extended to account for particular flow conditions. This article reviews historical developments aimed at including inertial and slip effects (respectively, when the Reynolds and Knudsen numbers are not exceedingly small compared to unity). Despite the early empirical extensions to include inertia and slip effects, it is striking to observe that clear formal derivations of physical models to account for these effects were reported only recently.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2017.06.005
Mots clés : Porous media, Inertial flow, Slip flow, Darcy's law, Forchheimer correction, Klinkenberg correction
Didier Lasseux 1 ; Francisco J. Valdés-Parada 2

1 CNRS, Université de Bordeaux, I2M – UMR 5295, Esplanade des Arts-et-Métiers, 33405 Talence cedex, France
2 Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Ingeniería de Procesos e Hidráulica, Av. San Rafael Atlixco 186, 09340 Mexico, D.F., Mexico
@article{CRMECA_2017__345_9_660_0,
     author = {Didier Lasseux and Francisco J. Vald\'es-Parada},
     title = {On the developments of {Darcy's} law to include inertial and slip effects},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {660--669},
     publisher = {Elsevier},
     volume = {345},
     number = {9},
     year = {2017},
     doi = {10.1016/j.crme.2017.06.005},
     language = {en},
}
TY  - JOUR
AU  - Didier Lasseux
AU  - Francisco J. Valdés-Parada
TI  - On the developments of Darcy's law to include inertial and slip effects
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 660
EP  - 669
VL  - 345
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crme.2017.06.005
LA  - en
ID  - CRMECA_2017__345_9_660_0
ER  - 
%0 Journal Article
%A Didier Lasseux
%A Francisco J. Valdés-Parada
%T On the developments of Darcy's law to include inertial and slip effects
%J Comptes Rendus. Mécanique
%D 2017
%P 660-669
%V 345
%N 9
%I Elsevier
%R 10.1016/j.crme.2017.06.005
%G en
%F CRMECA_2017__345_9_660_0
Didier Lasseux; Francisco J. Valdés-Parada. On the developments of Darcy's law to include inertial and slip effects. Comptes Rendus. Mécanique, Volume 345 (2017) no. 9, pp. 660-669. doi : 10.1016/j.crme.2017.06.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.06.005/

[1] H. Darcy Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris, 1856

[2] M. Muskat; H.G. Botset Flow of gas through porous materials, J. Appl. Phys., Volume 27 (1931), pp. 27-47 | DOI

[3] M. Zerner Aux origines de la loi de darcy (1856) http://dht.revues.org/1625 (Docs. hist. tech.)

[4] J. Boussinesq Recherches théoriques sur l'écoulement des nappes d'eau infiltrées dans le sol et sur le débit des sources, J. Math. Pures Appl., Volume 10 (1904), pp. 5-78

[5] O. Emersleben The Darcy filter formula, Phys. Z, Volume 26 (1925), pp. 601-610

[6] S. Irmay On the theoretical derivation of Darcy and Forchheimer formulas, J. Geophys. Res., Volume 39 (1958), pp. 702-707

[7] W.A. Hall An analytical derivation of the Darcy equation, Trans. Am. Geophys. Union, Volume 37 (1956), pp. 185-188

[8] M. Muskat Flow of Homogeneous Fluids through Porous Media, McGraw–Hill, 1937

[9] F. Blake The resistance of packing to fluid flow, Trans. AIChE, Volume 14 (1922), pp. 415-421

[10] J. Kozeny Ueber kapillare leitung des wassers im boden, Sitz.ber. – Akad. Wiss. Wien, Volume 136 (1927), pp. 271-306

[11] P.C. Carman Flow of Gases Through Porous Media, Academic Press, New York, 1956

[12] S. Whitaker The equations of motion in porous media, Chem. Eng. Sci., Volume 21 (1966) no. 3, pp. 291-300 | DOI

[13] C. Marle Écoulements monophasiques en milieu poreux, Rev. Inst. Fr. Pét., Volume XXII (1967), pp. 1471-1509

[14] S. Whitaker Flow in porous media I: a theoretical derivation of Darcy's law, Transp. Porous Media, Volume 1 (1986) no. 1, pp. 3-25 | DOI

[15] S. Whitaker The Method of Volume Averaging, Kluwer Academic Publishers, 1999

[16] J.L. Auriault Nonsaturated deformable porous media: quasistatics, Transp. Porous Media, Volume 2 (1987), pp. 405-464

[17] P. Forchheimer Wasserbewegung durch boden, Z. Ver. Dtsch. Ing., Volume XXXXV (1901) no. 49, pp. 1781-1788

[18] H.C. Brinkman A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Flow Turbul. Combust., Volume 1 (1949) no. 1, pp. 27-34 | DOI

[19] L.J. Klinkenberg, Amer. Pet. Inst. (1941), pp. 200-213 https://www.onepetro.org/conference-paper/API-41-200

[20] M. Quintard; S. Whitaker Écoulement monophasique en milieu poreux: effet des hétérogénéités locales, J. Méc. Théor. Appl., Volume 6 (1987), pp. 691-726

[21] R.R. Kairi; P.V.S.N. Murthy Effect of viscous dissipation on natural convection heat and mass transfer from vertical cone in a non-Newtonian fluid saturated non-Darcy porous medium, Appl. Math. Comput., Volume 217 (2011) no. 20, pp. 8100-8114 | DOI

[22] P.Y. Polubarinova-Kochina Theory of Ground Water Motion, Goss. Izdat. Tekh.-Teoret. Lit., Moscow, 1952 (see also a translation by J.M. Roger de Wiest, 1962, Princeton University Press)

[23] G. Chauveteau; C. Thirriot Régimes d'écoulement en milieu poreux et limite de la loi de Darcy, Houille Blanche, Volume 2 (1967), pp. 141-148

[24] A. Dybbs; R.V. Edwards A new look at porous media fluid mechanics – Darcy to turbulent (J. Bear; M.Y. Corapcioglu, eds.), Fundamentals of Transport Phenomena in Porous Media, Springer Nature, Dordrecht, The Netherlands, 1984, pp. 199-256

[25] C.K. Ghaddar On the permeability of unidirectional fibrous media: a parallel computational approach, Phys. Fluids, Volume 7 (1995) no. 11, pp. 2563-2586

[26] J.B. Koch; J.C. Ladd Moderate Reynolds number flows through periodic and random arrays of aligned cylinders, J. Fluid Mech., Volume 340 (1997), pp. 31-66

[27] S. Ergun Fluid flow through packed columns, Chem. Eng. Prog., Volume 48 (1952), pp. 89-94

[28] F.A.L. Dullien; M.I.S. Azzam Flow rate-pressure gradient measurement in periodically nonuniform capillary tubes, AIChE J., Volume 19 (1973), pp. 222-229

[29] J. Bear Dynamics of Fluids in Porous Media, Dover, New York, 1972

[30] J. Geertsma Estimating the coefficient of inertial resistance in fluid flow through porous media, SPE J. (1974), pp. 445-450

[31] S.M. Hassanizadeh; W.G. Gray High velocity flow in porous media, Transp. Porous Media, Volume 2 (1987), pp. 521-531

[32] T. Giorgi Derivation of the Forchheimer law via matched asymptotic expansions, Transp. Porous Media, Volume 29 (1997), pp. 191-206

[33] Z. Chen; S.L. Lyons; G. Qin Derivation of the Forchheimer law via homogenization, Transp. Porous Media, Volume 44 (2001) no. 2, pp. 325-335

[34] J. Barrère Modélisation des écoulement de Stokes et de Navier–Stokes en milieu poreux, University of Bordeaux, France, 1990 (Ph.D. thesis)

[35] J.C. Wodie; T. Levy Correction non linéaire de la loi de Darcy, C. R. Acad. Sci. Paris, Ser., Volume II (1991), pp. 157-161

[36] C.C. Mei; J.L. Auriault The effect of weak inertia on flow through a porous medium, J. Fluid Mech., Volume 222 (1991), pp. 647-663

[37] M. Rasoloarijaona; J.L. Auriault Nonlinear seepage flow through a rigid porous medium, Eur. J. Mech. B, Fluids, Volume 13 (1994), pp. 177-195

[38] E. Skjetne; A. Hansen; J.S. Gudmundsson High velocity flow in a rough fracture, J. Fluid Mech., Volume 383 (1999), pp. 1-28

[39] E. Skjetne; J.L. Auriault New insights on steady, non-linear flow in porous media, Eur. J. Mech. B, Fluids, Volume 18 (1999) no. 1, pp. 131-145

[40] E. Skjetne; J.L. Auriault High-velocity laminar and turbulent flow in porous media, Transp. Porous Media, Volume 36 (1999), pp. 131-147

[41] S. Whitaker The Forchheimer equation: a theoretical development, Transp. Porous Media, Volume 25 (1996), pp. 27-61

[42] J.S. Andrade; U.M.S. Costa; M.P. Almeida; H.A. Makse; H.E. Stanley Inertial effects on fluid flow through disordered porous media, Phys. Rev. Lett., Volume 82 (1999) no. 26, pp. 5249-5252

[43] D. Lasseux; A.A. Abbasian Arani; A. Ahmadi On the stationary macroscopic inertial effects for one phase flow in ordered and disordered porous media, Phys. Fluids, Volume 23 (2011) no. 7

[44] M. Agnaou; D. Lasseux; A. Ahmadi From steady to unsteady laminar flow in model porous structures: an investigation of the first Hopf bifurcation, Comput. Fluids, Volume 136 (2016), pp. 67-82 | DOI

[45] J.C. Maxwell On stresses in rarified gases arising from inequalities of temperature, Philos. Trans. R. Soc. Lond., Volume 170 (1879), pp. 231-256 | DOI

[46] M. Navier Mémoire sur les lois du mouvemet des fluides, Academie royale des sciences de l'institut de France, 1822

[47] R. Jackson Transport in Porous Catalysts, Elsevier, 1977

[48] A. Kundt; E. Warburg On friction and heat-conduction in rarefied gases, Philos. Mag. Ser. 4, Volume 50 (1875) no. 328, pp. 53-62 http://www.tandfonline.com/doi/abs/10.1080/14786447508641259?journalCode=tphm15

[49] M. Knudsen Die gesetze der molekularstromung und der inneren reibungsströmung der gase durch röhren, Ann. Phys., Volume 28 (1909), pp. 75-130

[50] F.A.L. Dullien Porous Media. Fluid Transport and Pore Structure, Academic Press, 1992

[51] W. Steckelmacher Knudsen flow 75 years on: the current state of the art for flow of rarefied gases in tubes and systems, Rep. Prog. Phys., Volume 49 (1986) no. 10, pp. 1083-1107 | DOI

[52] H. Adzumi Studies on the flow of gaseous mixtures through capillaries. I. The viscosity of binary gaseous mixtures, Bull. Chem. Soc. Jpn., Volume 12 (1937) no. 5, pp. 199-226 | DOI

[53] H. Adzumi Studies on the flow of gaseous mixtures through capillaries. II. The molecular flow of gaseous mixtures, Bull. Chem. Soc. Jpn., Volume 12 (1937) no. 6, pp. 285-291 | DOI

[54] H. Adzumi Studies on the flow of gaseous mixtures through capillaries. III. The flow of gaseous mixtures at medium pressures, Bull. Chem. Soc. Jpn., Volume 12 (1937) no. 6, pp. 292-303 | DOI

[55] J.C. Maxwell II. Illustrations of the dynamical theory of gases, Philos. Mag. Ser. 4, Volume 20 (1860) no. 130, pp. 21-37 http://www.tandfonline.com/doi/abs/10.1080/14786446008642902

[56] S. Shen; G. Chen; R.M. Crone; M. Anaya-Dufresne A kinetic-theory based first order slip boundary condition for gas flow, Phys. Fluids, Volume 19 (2007) no. 8 | DOI

[57] R.G. Deissler An analysis of second-order slip flow and temperature-jump boundary conditions for rarefied gases, Int. J. Heat Mass Transf., Volume 7 (1964) no. 6, pp. 681-694 | DOI

[58] C. Cercignani Higher Order Slip According to the Linearized Boltzmann Equation, University of California, Berkeley, 1964 (Tech. rep., Institute of Engineering Research Report AS-64-19)

[59] L. García-Colín; R. Velasco; F. Uribe Beyond the Navier–Stokes equations: Burnett hydrodynamics, Phys. Rep., Volume 465 (2008) no. 4, pp. 149-189 | DOI

[60] D. Einzel; P. Panzer; M. Liu Boundary condition for fluid flow: curved or rough surface, Phys. Rev. Lett., Volume 64 (1990) no. 19, pp. 2269-2272

[61] E. Skjetne; J.L. Auriault Homogenization of wall-slip gas flow through porous media, Transp. Porous Media, Volume 36 (1999), pp. 293-306

[62] J. Chastanet; P. Royer; J.-L. Auriault Flow of low pressure gas through dual-porosity media, Transp. Porous Media, Volume 66 (2007) no. 3, pp. 457-479 | DOI

[63] D. Lasseux; F.J. Valdés-Parada; J.A. Ochoa-Tapia; B. Goyeau A macroscopic model for slightly compressible gas slip-flow in homogeneous porous media, Phys. Fluids, Volume 26 (2014)

[64] D. Lasseux; F.J. Valdés-Parada; M. Porter An improved macroscale model for gas slip flow in porous media, J. Fluid Mech., Volume 805 (2016), pp. 118-146

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Singular nature of nonlinear macroscale effects in high-rate flow through porous media

Mikhail Panfilov; Constantin Oltean; Irina Panfilova; ...

C. R. Méca (2003)


Structuration de la convection mixte en milieu poreux confiné latéralement et chauffé par le bas : effets d'inertie

Alexandre Delache; Najib Ouarzazi; Marie-Christine Neel

C. R. Méca (2002)


Numerical study of fluid flow at pore scale in packed bed of spheres and grains to obtain the REV

Luis Carlos Martínez-Mendoza; Florencio Sánchez-Silva; Erik Fernando Martínez-Mendoza; ...

C. R. Méca (2020)