The empirical Darcy law describing flow in porous media, whose convincing theoretical justification was proposed almost 130 years after its original publication in 1856, has however been extended to account for particular flow conditions. This article reviews historical developments aimed at including inertial and slip effects (respectively, when the Reynolds and Knudsen numbers are not exceedingly small compared to unity). Despite the early empirical extensions to include inertia and slip effects, it is striking to observe that clear formal derivations of physical models to account for these effects were reported only recently.
Accepted:
Published online:
Didier Lasseux 1; Francisco J. Valdés-Parada 2
@article{CRMECA_2017__345_9_660_0, author = {Didier Lasseux and Francisco J. Vald\'es-Parada}, title = {On the developments of {Darcy's} law to include inertial and slip effects}, journal = {Comptes Rendus. M\'ecanique}, pages = {660--669}, publisher = {Elsevier}, volume = {345}, number = {9}, year = {2017}, doi = {10.1016/j.crme.2017.06.005}, language = {en}, }
TY - JOUR AU - Didier Lasseux AU - Francisco J. Valdés-Parada TI - On the developments of Darcy's law to include inertial and slip effects JO - Comptes Rendus. Mécanique PY - 2017 SP - 660 EP - 669 VL - 345 IS - 9 PB - Elsevier DO - 10.1016/j.crme.2017.06.005 LA - en ID - CRMECA_2017__345_9_660_0 ER -
Didier Lasseux; Francisco J. Valdés-Parada. On the developments of Darcy's law to include inertial and slip effects. Comptes Rendus. Mécanique, A century of fluid mechanics: 1870–1970, Volume 345 (2017) no. 9, pp. 660-669. doi : 10.1016/j.crme.2017.06.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.06.005/
[1] Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris, 1856
[2] Flow of gas through porous materials, J. Appl. Phys., Volume 27 (1931), pp. 27-47 | DOI
[3] Aux origines de la loi de darcy (1856) http://dht.revues.org/1625 (Docs. hist. tech.)
[4] Recherches théoriques sur l'écoulement des nappes d'eau infiltrées dans le sol et sur le débit des sources, J. Math. Pures Appl., Volume 10 (1904), pp. 5-78
[5] The Darcy filter formula, Phys. Z, Volume 26 (1925), pp. 601-610
[6] On the theoretical derivation of Darcy and Forchheimer formulas, J. Geophys. Res., Volume 39 (1958), pp. 702-707
[7] An analytical derivation of the Darcy equation, Trans. Am. Geophys. Union, Volume 37 (1956), pp. 185-188
[8] Flow of Homogeneous Fluids through Porous Media, McGraw–Hill, 1937
[9] The resistance of packing to fluid flow, Trans. AIChE, Volume 14 (1922), pp. 415-421
[10] Ueber kapillare leitung des wassers im boden, Sitz.ber. – Akad. Wiss. Wien, Volume 136 (1927), pp. 271-306
[11] Flow of Gases Through Porous Media, Academic Press, New York, 1956
[12] The equations of motion in porous media, Chem. Eng. Sci., Volume 21 (1966) no. 3, pp. 291-300 | DOI
[13] Écoulements monophasiques en milieu poreux, Rev. Inst. Fr. Pét., Volume XXII (1967), pp. 1471-1509
[14] Flow in porous media I: a theoretical derivation of Darcy's law, Transp. Porous Media, Volume 1 (1986) no. 1, pp. 3-25 | DOI
[15] The Method of Volume Averaging, Kluwer Academic Publishers, 1999
[16] Nonsaturated deformable porous media: quasistatics, Transp. Porous Media, Volume 2 (1987), pp. 405-464
[17] Wasserbewegung durch boden, Z. Ver. Dtsch. Ing., Volume XXXXV (1901) no. 49, pp. 1781-1788
[18] A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Flow Turbul. Combust., Volume 1 (1949) no. 1, pp. 27-34 | DOI
[19] https://www.onepetro.org/conference-paper/API-41-200
, Amer. Pet. Inst. (1941), pp. 200-213[20] Écoulement monophasique en milieu poreux: effet des hétérogénéités locales, J. Méc. Théor. Appl., Volume 6 (1987), pp. 691-726
[21] Effect of viscous dissipation on natural convection heat and mass transfer from vertical cone in a non-Newtonian fluid saturated non-Darcy porous medium, Appl. Math. Comput., Volume 217 (2011) no. 20, pp. 8100-8114 | DOI
[22] Theory of Ground Water Motion, Goss. Izdat. Tekh.-Teoret. Lit., Moscow, 1952 (see also a translation by J.M. Roger de Wiest, 1962, Princeton University Press)
[23] Régimes d'écoulement en milieu poreux et limite de la loi de Darcy, Houille Blanche, Volume 2 (1967), pp. 141-148
[24] A new look at porous media fluid mechanics – Darcy to turbulent (J. Bear; M.Y. Corapcioglu, eds.), Fundamentals of Transport Phenomena in Porous Media, Springer Nature, Dordrecht, The Netherlands, 1984, pp. 199-256
[25] On the permeability of unidirectional fibrous media: a parallel computational approach, Phys. Fluids, Volume 7 (1995) no. 11, pp. 2563-2586
[26] Moderate Reynolds number flows through periodic and random arrays of aligned cylinders, J. Fluid Mech., Volume 340 (1997), pp. 31-66
[27] Fluid flow through packed columns, Chem. Eng. Prog., Volume 48 (1952), pp. 89-94
[28] Flow rate-pressure gradient measurement in periodically nonuniform capillary tubes, AIChE J., Volume 19 (1973), pp. 222-229
[29] Dynamics of Fluids in Porous Media, Dover, New York, 1972
[30] Estimating the coefficient of inertial resistance in fluid flow through porous media, SPE J. (1974), pp. 445-450
[31] High velocity flow in porous media, Transp. Porous Media, Volume 2 (1987), pp. 521-531
[32] Derivation of the Forchheimer law via matched asymptotic expansions, Transp. Porous Media, Volume 29 (1997), pp. 191-206
[33] Derivation of the Forchheimer law via homogenization, Transp. Porous Media, Volume 44 (2001) no. 2, pp. 325-335
[34] Modélisation des écoulement de Stokes et de Navier–Stokes en milieu poreux, University of Bordeaux, France, 1990 (Ph.D. thesis)
[35] Correction non linéaire de la loi de Darcy, C. R. Acad. Sci. Paris, Ser., Volume II (1991), pp. 157-161
[36] The effect of weak inertia on flow through a porous medium, J. Fluid Mech., Volume 222 (1991), pp. 647-663
[37] Nonlinear seepage flow through a rigid porous medium, Eur. J. Mech. B, Fluids, Volume 13 (1994), pp. 177-195
[38] High velocity flow in a rough fracture, J. Fluid Mech., Volume 383 (1999), pp. 1-28
[39] New insights on steady, non-linear flow in porous media, Eur. J. Mech. B, Fluids, Volume 18 (1999) no. 1, pp. 131-145
[40] High-velocity laminar and turbulent flow in porous media, Transp. Porous Media, Volume 36 (1999), pp. 131-147
[41] The Forchheimer equation: a theoretical development, Transp. Porous Media, Volume 25 (1996), pp. 27-61
[42] Inertial effects on fluid flow through disordered porous media, Phys. Rev. Lett., Volume 82 (1999) no. 26, pp. 5249-5252
[43] On the stationary macroscopic inertial effects for one phase flow in ordered and disordered porous media, Phys. Fluids, Volume 23 (2011) no. 7
[44] From steady to unsteady laminar flow in model porous structures: an investigation of the first Hopf bifurcation, Comput. Fluids, Volume 136 (2016), pp. 67-82 | DOI
[45] On stresses in rarified gases arising from inequalities of temperature, Philos. Trans. R. Soc. Lond., Volume 170 (1879), pp. 231-256 | DOI
[46] Mémoire sur les lois du mouvemet des fluides, Academie royale des sciences de l'institut de France, 1822
[47] Transport in Porous Catalysts, Elsevier, 1977
[48] On friction and heat-conduction in rarefied gases, Philos. Mag. Ser. 4, Volume 50 (1875) no. 328, pp. 53-62 http://www.tandfonline.com/doi/abs/10.1080/14786447508641259?journalCode=tphm15
[49] Die gesetze der molekularstromung und der inneren reibungsströmung der gase durch röhren, Ann. Phys., Volume 28 (1909), pp. 75-130
[50] Porous Media. Fluid Transport and Pore Structure, Academic Press, 1992
[51] Knudsen flow 75 years on: the current state of the art for flow of rarefied gases in tubes and systems, Rep. Prog. Phys., Volume 49 (1986) no. 10, pp. 1083-1107 | DOI
[52] Studies on the flow of gaseous mixtures through capillaries. I. The viscosity of binary gaseous mixtures, Bull. Chem. Soc. Jpn., Volume 12 (1937) no. 5, pp. 199-226 | DOI
[53] Studies on the flow of gaseous mixtures through capillaries. II. The molecular flow of gaseous mixtures, Bull. Chem. Soc. Jpn., Volume 12 (1937) no. 6, pp. 285-291 | DOI
[54] Studies on the flow of gaseous mixtures through capillaries. III. The flow of gaseous mixtures at medium pressures, Bull. Chem. Soc. Jpn., Volume 12 (1937) no. 6, pp. 292-303 | DOI
[55] II. Illustrations of the dynamical theory of gases, Philos. Mag. Ser. 4, Volume 20 (1860) no. 130, pp. 21-37 http://www.tandfonline.com/doi/abs/10.1080/14786446008642902
[56] A kinetic-theory based first order slip boundary condition for gas flow, Phys. Fluids, Volume 19 (2007) no. 8 | DOI
[57] An analysis of second-order slip flow and temperature-jump boundary conditions for rarefied gases, Int. J. Heat Mass Transf., Volume 7 (1964) no. 6, pp. 681-694 | DOI
[58] Higher Order Slip According to the Linearized Boltzmann Equation, University of California, Berkeley, 1964 (Tech. rep., Institute of Engineering Research Report AS-64-19)
[59] Beyond the Navier–Stokes equations: Burnett hydrodynamics, Phys. Rep., Volume 465 (2008) no. 4, pp. 149-189 | DOI
[60] Boundary condition for fluid flow: curved or rough surface, Phys. Rev. Lett., Volume 64 (1990) no. 19, pp. 2269-2272
[61] Homogenization of wall-slip gas flow through porous media, Transp. Porous Media, Volume 36 (1999), pp. 293-306
[62] Flow of low pressure gas through dual-porosity media, Transp. Porous Media, Volume 66 (2007) no. 3, pp. 457-479 | DOI
[63] A macroscopic model for slightly compressible gas slip-flow in homogeneous porous media, Phys. Fluids, Volume 26 (2014)
[64] An improved macroscale model for gas slip flow in porous media, J. Fluid Mech., Volume 805 (2016), pp. 118-146
Cited by Sources:
Comments - Policy