Comptes Rendus
Geometrical versus rheological transient creep closure in a salt cavern
Comptes Rendus. Mécanique, Volume 345 (2017) no. 11, pp. 735-741.

An in-situ test performed in a brine-filled cavern proves that, when brine pressure decreases rapidly, the creep closure rate increases drastically. Conversely, a rapid pressure increase leads to “reverse” creep closure: cavern volume increases, even when, at cavern depth, fluid pressure is lower than geostatic pressure. It is tempting to explain these two phenomena by transient salt creep, a characteristic feature of salt rheological behavior commonly observed during laboratory creep tests. In fact, computations performed on an idealized cylindrical cavern excavated from a Norton–Hoff rock mass (a constitutive law that includes no transient component) prove that these two phenomena are, at least partly, of a structural nature: their origin is in the slow redistribution of stresses following any pressure change.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2017.09.002
Mots clés : Creep, Reverse creep, Salt caverns, In situ tests
Pierre Bérest 1 ; Mehdi Karimi-Jafari 1 ; Benoît Brouard 2

1 Laboratoire de mécanique des solides, École polytechnique, route de Saclay, 91128 Palaiseau cedex, France
2 Brouard Consulting, 101, rue du Temple, 75003 Paris, France
@article{CRMECA_2017__345_11_735_0,
     author = {Pierre B\'erest and Mehdi Karimi-Jafari and Beno{\^\i}t Brouard},
     title = {Geometrical versus rheological transient creep closure in a salt cavern},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {735--741},
     publisher = {Elsevier},
     volume = {345},
     number = {11},
     year = {2017},
     doi = {10.1016/j.crme.2017.09.002},
     language = {en},
}
TY  - JOUR
AU  - Pierre Bérest
AU  - Mehdi Karimi-Jafari
AU  - Benoît Brouard
TI  - Geometrical versus rheological transient creep closure in a salt cavern
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 735
EP  - 741
VL  - 345
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crme.2017.09.002
LA  - en
ID  - CRMECA_2017__345_11_735_0
ER  - 
%0 Journal Article
%A Pierre Bérest
%A Mehdi Karimi-Jafari
%A Benoît Brouard
%T Geometrical versus rheological transient creep closure in a salt cavern
%J Comptes Rendus. Mécanique
%D 2017
%P 735-741
%V 345
%N 11
%I Elsevier
%R 10.1016/j.crme.2017.09.002
%G en
%F CRMECA_2017__345_11_735_0
Pierre Bérest; Mehdi Karimi-Jafari; Benoît Brouard. Geometrical versus rheological transient creep closure in a salt cavern. Comptes Rendus. Mécanique, Volume 345 (2017) no. 11, pp. 735-741. doi : 10.1016/j.crme.2017.09.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.09.002/

[1] B. Hugout Mechanical behavior of salt cavities – in situ tests – model for calculating the cavity volume evolution (H.R. Hardy; M. Langer, eds.), Proceedings of the Second Conference on the Mechanical Behavior of Salt, Trans Tech Publications, Clausthal-Zellerfeld, Germany, 1988

[2] P. Bérest; B. Brouard; M. Karimi-Jafari; L. Van Sambeek Transient behavior of salt caverns. Interpretation of mechanical integrity tests, Int. J. Rock Mech. Min. Sci., Volume 44 (2007), pp. 767-786

[3] U. Hunsche Measurement of creep in rock salt at small strain rates (N.D. Cristescu; H.R. Hardy; R.O. Simionescu, eds.), Proceedings of the Fifth Conference on the Mechanical Behavior of Salt, Trans Tech Publications, Clausthal-Zellerfeld, Germany, 1999

[4] D.E. Munson; K.L. De Vries; A.F. Fossum; G.D. Callahan Extension of the Munson–Dawson model for treating stress drops in salt (M. Ghoreychi; P. Bérest; H.R. Hardy; M. Langer, eds.), Proceedings of the Third Conference on the Mechanical Behavior of Salt, Trans Tech Publications, Clausthal-Zellerfeld, Germany, 1996

[5] P. Bérest; B. Brouard Geometrical and rheological creep in salt caverns (L. Roberts; K. Mellegard; F. Hansen, eds.), The Mechanical Behavior of Salt VIII, Taylor & Francis Group, London, 2015, pp. 199-208

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

“Tepid” Geysers above salt caverns

Pierre Bérest; Benoît Brouard; Vassily Zakharov

C. R. Méca (2018)


Multi-parameter monitoring of a solution mining cavern collapse: First insight of precursors

Isabelle Contrucci; Emmanuelle Klein; Ngoc-Tuyen Cao; ...

C. R. Géos (2011)


Extraction of Am and rare-earth elements from acidic solutions by alkyl derivatives of dibenzo- and dicyclohexano-18-crown-6

Victor V. Yakshin; Valerii I. Zhilov; Sergei V. Demin; ...

C. R. Chim (2007)