Comptes Rendus
The legacy of Jean-Jacques Moreau in mechanics
Multi-periodic boundary conditions and the Contact Dynamics method
Comptes Rendus. Mécanique, Volume 346 (2018) no. 3, pp. 263-277.

For investigating the mechanical behavior of granular materials by means of the discrete element approach, it is desirable to be able to simulate representative volume elements with macroscopically homogeneous deformations. This can be achieved by means of fully periodic boundary conditions such that stresses or displacements can be applied in all space directions. We present a general framework for periodic boundary conditions in granular materials and its implementation more specifically in the Contact Dynamics method.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2017.12.007
Mots clés : Granular materials, Contact Dynamics method, Periodic boundary conditions

Farhang Radjai 1, 2

1 LMGC, CNRS–University of Montpellier, 163, rue Auguste-Broussonnet, 34090 Montpellier, France
2 MultiScale Material Science for Energy and Environment, UMI 3466 CNRS–MIT, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge 02139, USA
@article{CRMECA_2018__346_3_263_0,
     author = {Farhang Radjai},
     title = {Multi-periodic boundary conditions and the {Contact} {Dynamics} method},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {263--277},
     publisher = {Elsevier},
     volume = {346},
     number = {3},
     year = {2018},
     doi = {10.1016/j.crme.2017.12.007},
     language = {en},
}
TY  - JOUR
AU  - Farhang Radjai
TI  - Multi-periodic boundary conditions and the Contact Dynamics method
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 263
EP  - 277
VL  - 346
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2017.12.007
LA  - en
ID  - CRMECA_2018__346_3_263_0
ER  - 
%0 Journal Article
%A Farhang Radjai
%T Multi-periodic boundary conditions and the Contact Dynamics method
%J Comptes Rendus. Mécanique
%D 2018
%P 263-277
%V 346
%N 3
%I Elsevier
%R 10.1016/j.crme.2017.12.007
%G en
%F CRMECA_2018__346_3_263_0
Farhang Radjai. Multi-periodic boundary conditions and the Contact Dynamics method. Comptes Rendus. Mécanique, Volume 346 (2018) no. 3, pp. 263-277. doi : 10.1016/j.crme.2017.12.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.12.007/

[1] P.A. Cundall; O.D.L. Strack A discrete numerical model for granular assemblies, Géotechnique, Volume 29 (1979) no. 1, pp. 47-65

[2] C. Thornton; K.K. Yin Impact of elastic spheres with and without adhesion, Powder Technol., Volume 65 (1991), p. 153

[3] H.J. Herrmann Molecular dynamics simulations of dry granular media, Osaka, Japan (1993), p. 8

[4] C. Thornton Computer simulation of impact fracture/fragmentation, Osaka, Japan (1993), p. 17

[5] T. Pöschel; V. Buchholtz Molecular dynamics of arbitrarily shaped granular particles, J. Phys. I France, Volume 5 (1995) no. 11, pp. 1431-1455

[6] C. Thornton Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres, J. Appl. Mech., Volume 64 (1997), pp. 383-386

[7] S. Luding Collisions and contacts between two particles (H.J. Herrmann; J.-P. Hovi; S. Luding, eds.), Physics of Dry Granular Media, NATO ASI Ser., vol. E350, Kluwer Academic Publishers, Dordrecht, 1998, p. 285

[8] H.-G. Matuttis; S. Luding; H.J. Herrmann Discrete element methods for the simulation of dense packings and heaps made of spherical and non-spherical particles, Powder Technol., Volume 109 (2000), pp. 278-292

[9] S. McNamara; H. Herrmann Measurement of indeterminacy in packings of perfectly rigid disks, Phys. Rev. E, Volume 70 (2004) no. 6 Pt 1

[10] X. Garcia; E. Medina Acoustic response of cemented granular sedimentary rocks: molecular dynamics modeling, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys., Volume 75 (2007) no. 6 Pt 1

[11] F.A. Gilabert; J.-N. Roux; A. Castellanos Computer simulation of model cohesive powders: influence of assembling procedure and contact laws on low consolidation states, Phys. Rev. E, Volume 75 (2007) no. 1 Pt 1

[12] V. Richefeu; F. Radjai; M.S.E. Youssoufi Stress transmission in wet granular materials, Eur. Phys. J. E, Volume 21 (2007), pp. 359-369

[13] J.-J. Moreau Evolution problem associated with a moving convex set in a Hilbert space, J. Differ. Equ., Volume 26 (1977), pp. 347-374

[14] J.-J. Moreau Liaisons unilatérales sans frottement et chocs inélastiques, C. R. Acad. Sci. Paris, Ser. II, Volume 296 (1983), pp. 1473-1476

[15] J.-J. Moreau Bounded variation in time (P. Panagiotopoulos; G. Strang, eds.), Topics in Nonsmooth Mechanics, Bikhäuser, Basel, Switzerland, 1988, pp. 1-74

[16] J.-J. Moreau Unilateral contact and dry friction in finite freedom dynamics, Nonsmooth Mechanics and Applications, International Centre for Mechanical Sciences, Courses and Lectures, vol. 302, Springer, Vienna, 1988, pp. 1-82

[17] J.-J. Moreau New computation methods in granular dynamics, Powders & Grains 93, A. A. Balkema, Rotterdam, The Netherlands, 1993, p. 227

[18] J. Moreau Some numerical methods in multibody dynamics: application to granular, Eur. J. Mech. A, Solids, Volume 13 (1994), pp. 93-114

[19] M. Jean; E. Pratt A system of rigid bodies with dry friction, Int. J. Eng. Sci. (1985), pp. 497-513

[20] M. Jean Unilateral contact and dry friction: time and space variables discretization, Arch. Mech. Warszawa, Volume 40 (1988) no. 1, pp. 677-691

[21] M. Jean; J.-J. Moreau Unilaterality and dry friction in the dynamics of rigid body collections, Proceedings of Contact Mechanics International Symposium, Presses polytechniques et universitaires romandes, Lausanne, Switzerland, 1992, pp. 31-48

[22] J.-J. Moreau Numerical investigation of shear zones in granular materials (D.E. Wolf; P. Grassberger, eds.), Friction, Arching, Contact Dynamics, World Scientific, Singapore, 1997, pp. 233-247

[23] F. Radjai; M. Jean; J.-J. Moreau; S. Roux Force distributions in dense two-dimensional granular systems, Phys. Rev. Lett., Volume 77 (1996) no. 2, p. 274

[24] F. Radjai; D.E. Wolf; M. Jean; J. Moreau Bimodal character of stress transmission in granular packings, Phys. Rev. Lett., Volume 80 (1998), pp. 61-64

[25] I. Bratberg; F. Radjai; A. Hansen Dynamic rearrangements and packing regimes in randomly deposited two-dimensional granular beds, Phys. Rev. E, Volume 66 (2002)

[26] F. Radjai; S. Roux Turbulentlike fluctuations in quasistatic flow of granular media, Phys. Rev. Lett., Volume 89 (2002) no. 6

[27] L. Staron; J.-P. Vilotte; F. Radjai Preavalanche instabilities in a granular pile, Phys. Rev. Lett., Volume 89 (2002)

[28] C. Nouguier-Lehon; B. Cambou; E. Vincens Influence of particle shape and angularity on the behavior of granular materials: a numerical analysis, Int. J. Numer. Anal. Methods Geomech., Volume 27 (2003), pp. 1207-1226

[29] M. Renouf; F. Dubois; P. Alart A parallel version of the non smooth contact dynamics algorithm applied to the simulation of granular media, J. Comput. Appl. Math., Volume 168 (2004) no. 1–2, pp. 375-382

[30] A. Taboada; K.J. Chang; F. Radjai; F. Bouchette Rheology, force transmission, and shear instabilities in frictional granular media from biaxial numerical test using the contact dynamics method, J. Geophys. Res., Volume 110 (2005), pp. 1-24

[31] G. Saussine; C. Cholet; P. Gautier; F. Dubois; C. Bohatier; J. Moreau Modelling ballast behaviour under dynamic loading. Part 1: a 2d polygonal discrete element method approach, Comput. Methods Appl. Mech. Eng., Volume 195 (2006) no. 19–22, pp. 2841-2859

[32] E. Azéma; F. Radjai; R. Peyroux; G. Saussine Force transmission in a packing of pentagonal particles, Phys. Rev. E, Volume 76 (2007) no. 1 Pt 1

[33] A. Ries; D.E. Wolf; T. Unger Shear zones in granular media: three-dimensional contact dynamics simulation, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys., Volume 76 (2007) no. 5 Pt 1

[34] V. Acary; M. Jean Numerical simulation of monuments by the contact dynamics method (DGEMN-LNEC-JRC, ed.), Monument-98, Workshop on Seismic Performance of Monuments, LNEC, 1998, pp. 12-14

[35] S. Nineb; P. Alart; D. Dureisseix Approche multi-échelle des systèmes de tenségrité, Rev. Eur. Méc. Numér., Volume 15 (2006), pp. 319-328

[36] E. Radjai; R. Bideau Stick-slip dynamics of a one-dimensional array of particles, Phys. Rev. E, Volume 52 (1995) no. 5, pp. 5555-5564

[37] F. Radjai; J. Schäfer; S. Dippel; D. Wolf Collective friction of an array of particles: a crucial test for numerical algorithms, J. Phys. I France, Volume 7 (1997), p. 1053

[38] F. Radjai Multicontact dynamics of granular systems, Comput. Phys. Commun., Volume 121–122 (1999), pp. 294-298

[39] J. Lanier; M. Jean Experiments and numerical simulations with 2d disks assembly, Powder Technol., Volume 109 (2000), pp. 206-221

[40] F. Radjai; S. Roux Contact dynamics study of 2d granular media: critical states and relevant internal variables (H. Hinrichsen; D.E. Wolf, eds.), The Physics of Granular Media, Wiley-VCH, Weinheim, Germany, 2004, pp. 165-186

[41] S.C. McNamara; H.J. Herrmann Quasirigidity: some uniqueness issues, Phys. Rev. E, Volume 74 (2006) no. 6 Pt 1

[42] C. Thornton; L. Zhang A DEM comparison of different shear testing devices (Y. Kishino, ed.), Powders and Grains 2001, A.A. Balkema, 2001, pp. 183-190

[43] M.P. Allen; D.J. Tildesley Computer Simulation of Liquids, Oxford University Press, Oxford, UK, 1987

[44] M. Parrinello; A. Rahman Crystal structure and pair potentials: a molecular-dynamics study, Phys. Rev. Lett., Volume 45 (1980), p. 1196

[45] J. Moreau An introduction to unilateral dynamics (M. Frémond; F. Maceri, eds.), Novel Approaches in Civil Engineering, Lect. Notes Appl. Comput. Mech., vol. 14, Springer-Verlag, 2004, pp. 1-46

[46] F. Radjai; V. Richefeu Contact dynamics as a nonsmooth discrete element method, M. Mater., Volume 41 (2009), pp. 715-728

[47] S. Nosé; M. Klein Constant-temperature–constant pressure molecular-dynamics calculations for molecular solids: application to solid nitrogen at high pressure, Phys. Rev. B, Volume 33 (1986), pp. 339-342

[48] I. Souza; J. Martins Metric tensor as the dynamical variable for variable-cell-shape molecular dynamics, Phys. Rev. B, Volume 55 (1997), pp. 8733-8742

[49] P.-E. Peyneau; J.-N. Roux Solid-like behavior and anisotropy in rigid frictionless bead assemblies, Phys. Rev. E, Volume 78 (2008)

[50] P.-E. Peyneau; J.-N. Roux Frictionless bead packs have macroscopic friction, but no dilatancy, Phys. Rev. E, Volume 78 (2008)

[51] M. Parrinello; A. Rahman Polymorphic transitions in single crystals: a new molecular dynamics method, J. Appl. Phys., Volume 52 (1981), p. 7182

[52] C. Miehe; J. Dettmar A framework for micromacro transitions in periodic particle aggregates of granular materials, Comput. Methods Appl. Mech. Eng., Volume 193 (2004), pp. 225-256

[53] P. Podio-Guidugli On (Andersen–)Parrinello–Rahman molecular dynamics, the related metadynamics, and the use of the Cauchy–Born rule, J. Elast., Volume 100 (2010), pp. 145-153

[54] S.B. Savage; D.J. Jeffrey The stress tensor in a granular flow at high shear rates, J. Fluid Mech., Volume 110 (1981), p. 255

[55] J.D. Goddard; A.K. Didwania; X. Zhuang Computer simulations and experiment on the quasistatic mechanics and transport properties of granular materials (E. Guazzelli; L. Oger, eds.), Mobile Particulate Systems, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995, p. 261

[56] K. Bagi Microstructural stress tensor of granular assemblies with volume forces, J. Appl. Mech., Volume 66 (1999) no. 4, pp. 934-936

[57] I. Agnolin; J.-N. Roux Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys., Volume 76 (2007) no. 6–1

[58] I. Agnolin; J.-N. Roux Internal states of model isotropic granular packings. II. Compression and pressure cycles, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys., Volume 76 (2007) no. 6–1

Cited by Sources:

Comments - Politique