When velocity jumps are occurring, the dynamics is said to be nonsmooth. For instance, in collections of contacting rigid bodies, jumps are caused by shocks and dry friction. Without compliance at the interface, contact laws are not only non-differentiable in the usual sense but also multi-valued. Modeling contacting bodies is of interest in order to understand the behavior of numerous mechanical systems such as flexible multi-body systems, granular materials or masonry. These granular materials behave puzzlingly either like a solid or a fluid and a description in the frame of classical continuous mechanics would be welcome though far to be satisfactory nowadays. Jean-Jacques Moreau greatly contributed to convex analysis, functions of bounded variations, differential measure theory, sweeping process theory, definitive mathematical tools to deal with nonsmooth dynamics. He converted all these underlying theoretical ideas into an original nonsmooth implicit numerical method called Contact Dynamics (CD); a robust and efficient method to simulate large collections of bodies with frictional contacts and impacts. The CD method offers a very interesting complementary alternative to the family of smoothed explicit numerical methods, often called Distinct Elements Method (DEM). In this paper developments and improvements of the CD method are presented together with a critical comparative review of advantages and drawbacks of both approaches.
Lorsque des sauts de vitesse se produisent, la dynamique est dite non régulière. Par exemple, dans les collections de solides supposés rigides rentrant en contact, les sauts sont causés par les chocs et le frottement sec. L'absence de déformabilité fait que les lois de contact sont, non seulement non différentiables au sens usuel, mais aussi multi-valuées. Élaborer des modèles de solides en contact est un moyen de comprendre le comportement de nombreux systèmes mécaniques tels que les systèmes multi-corps flexibles, les matériaux granulaires ou les maçonneries. Les matériaux granulaires se comportent de manière étrange, soit comme des solides, soit comme des fluides, et une description dans le cadre de la mécanique classique des milieux continus, qui serait souhaitable, est loin d'être encore satisfaisante. Jean-Jacques Moreau a contribué, de façon fondamentale, à l'analyse convexe, à la théorie des fonctions à variations bornées et des mesures différentielles ainsi qu'au processus de rafle, outils mathématiques décisifs pour traiter la dynamique non régulière. Il a converti ces idées théoriques sous-jacentes en une méthode numérique originale appelée Contact Dynamics (CD), qui est une méthode non régulière implicite et aussi une méthode robuste et efficace pour simuler de larges collections de solides avec du contact frottant et des impacts. Le méthode CD offre une alternative très intéressante à la famille de méthodes usuelles régularisées explicites, comme la méthode des éléments distincts (DEM). Dans cet article, des développements et des perfectionnements de la méthode CD sont présentés ainsi qu'une étude critique comparative des avantages et inconvénients des deux approches.
Accepted:
Published online:
Mot clés : Dynamique non régulière, Chocs, Loi de Coulomb, Dynamique des contacts, Méthode par éléments discrets
Frédéric Dubois 1, 2; Vincent Acary 3; Michel Jean 4
@article{CRMECA_2018__346_3_247_0, author = {Fr\'ed\'eric Dubois and Vincent Acary and Michel Jean}, title = {The {Contact} {Dynamics} method: {A} nonsmooth story}, journal = {Comptes Rendus. M\'ecanique}, pages = {247--262}, publisher = {Elsevier}, volume = {346}, number = {3}, year = {2018}, doi = {10.1016/j.crme.2017.12.009}, language = {en}, }
Frédéric Dubois; Vincent Acary; Michel Jean. The Contact Dynamics method: A nonsmooth story. Comptes Rendus. Mécanique, Volume 346 (2018) no. 3, pp. 247-262. doi : 10.1016/j.crme.2017.12.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.12.009/
[1] The natural element method in solid mechanics, Int. J. Numer. Methods Eng., Volume 43 (1998) no. 5, pp. 839-887
[2] (Lecture Notes in Physics), Volume vol. 395 (1990), pp. 248-257
[3] L.D. Libersky, A.G. Petschek, T.C. Carney, J.R. Hipp, F.a. Allahdadi, High strain Lagrangian hydrodynamics, 1993.
[4] A discrete numerical model for granular assemblies, Géotechnique, Volume 29 (1979) no. 1, pp. 47-65
[5] Computer Simulation of Liquids, Oxford University Press, 1987
[6] Discontinuous deformation analysis: a new numerical model for the statics and dynamics, Eng. Comput., Volume 9 (1992), pp. 157-168
[7] Formulation of discontinuous deformation analysis (DDA) – an implicit discrete element model for block systems, Eng. Geol., Volume 49 (1998), pp. 371-381
[8] Discrete fracture network approach to characterise rock mass fragmentation and implications for geomechanical upscaling, Min. Technol., Volume 123 (2014) no. 3, pp. 149-161
[9] Computational Contact Mechanics, Springer Verlag, 2006
[10] Constantes d'un îlot tourbillonnaire en fluide parfait barotrope, C. R. hebd. Séances Acad. Sci. Paris, Volume 252 (1961), pp. 2810-2812
[11] Bounded variation in time (J.J. Moreau; P.D. Panagiotopoulos; G. Strang, eds.), Topics in Nonsmooth Mechanics, Birkhäuser, Basel, Switzerland, 1988, pp. 1-74
[12] Rafle par un convexe variable (première partie), exposé no 15, University of Montpellier, France (1971), p. 43
[13] Rafle par un convexe variable (deuxième partie) exposé no 3, University of Montpellier, France (1972) (36 p)
[14] Sur l'évolution d'un système élasto–viscoplastique, C. R. hebd. Séances Acad. Sci. Paris, Volume 274 (1971) no. A–B, pp. 118-121
[15] Evolution problem associated with a moving convex set in a Hilbert space, J. Differ. Equ., Volume 26 (1977), pp. 347-374
[16] Convex Analysis, Princeton University Press, Princeton, NJ, USA, 1970
[17] Fonctionnelles convexes, Séminaire Jean-Leray, 1966, pp. 1-108
[18] Problème d'évolution associé à un convexe mobile d'un espace hilbertien, C. R. hebd. Séances Acad. Sci. Paris, Volume 276 (1973), pp. 791-794
[19] Sur les mesures différentielles de fonctions vectorielles et certains problèmes d'évolution, C. R. hebd. Séances Acad. Sci. Paris, Volume 282 (1976), pp. 837-840
[20] On unilateral constraints, friction and plasticity, New Variational Techniques in Mathematical Physics, Edizioni Cremonese, Roma, 1974, pp. 175-322
[21] Application of convex analysis to the treatment of elastoplastic systems, Applications of Methods of Functional Analysis to Problems in Mechanics, Lecture Notes in Mathematics, vol. 503, Springer, Berlin, Heidelberg, 1976
[22] Un problème hyperbolique du 2e ordre avec contrainte unilatérale : la corde vibrante avec obstacle ponctuel, J. Differ. Equ., Volume 36 (1980) no. 2, pp. 295-334
[23] New inequality and functional for contact with friction: the implicit standard material approach, Mech. Struct. Mach., Volume 19 (1991) no. 3, pp. 301-325
[24] Set-Valued Force Laws: Dynamics of Non-Smooth Systems, Lecture Notes in Applied and Computational Mechanics, vol. 1, Springer Verlag, 2001
[25] On the equivalence between complementarity systems, projected systems and differential inclusions, Syst. Control Lett., Volume 55 (2006), pp. 45-51
[26] Numerical Methods for Nonsmooth Dynamics. Applications in Mechanics and Electronics, Springer Verlag, 2009
[27] Higher order event capturing time-stepping schemes for nonsmooth multibody systems with unilateral constraints and impacts, Appl. Numer. Math., Volume 62 (2012) no. 10, pp. 1259-1275
[28] Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb's friction, Comput. Methods Appl. Mech. Eng., Volume 256 (2013), pp. 224-250
[29] Dynamics in the presence of unilateral contacts and dry friction: a numerical approach (G. Del Piero; F. Maceri, eds.), Unilateral Problems in Structural Analysis-2, CISM Courses and Lectures, vol. 304, 1987, pp. 151-196
[30] Unilaterality and dry friction in the dynamics of rigid body collections, Proceedings of Contact Mechanics International Symposium, 1992, pp. 31-48
[31] Modélisation et simulation de matériaux granulaires (B. Mohammadi, ed.), Actes du 35e Congrès national d'analyse numérique, 2–6 June 2003
[32] The non-smooth contact dynamics method, Comput. Methods Appl. Mech. Eng., Volume 177 (1999) no. 3–4, pp. 235-257
[33] Micromechanics of Granular Materials, Iste, Wiley, London, UK, 2009
[34] Discrete Numerical Modeling of Granular Materials, Wiley, ISTE, 2010
[35] Unilateral contact and dry friction in finite freedom dynamics (J.-J. Moreau; P.D. Panagiotopoulos, eds.), Nonsmooth Mechanics and Applications, CISM Courses and Lectures, vol. 302, Springer Verlag, Wien, New York, 1988, pp. 1-82
[36] Numerical aspects of the sweeping process, Comput. Methods Appl. Mech. Eng., Volume 7825 (1999) no. 177, pp. 329-349
[37] Some numerical methods in multibody dynamics: application to granular materials, Eur. J. Mech. A, Solids (1994) no. 4 suppl., pp. 93-114
[38] Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis, Int. J. Numer. Methods Eng., Volume 15 (1980) no. 12, pp. 1862-1867
[39] Non smooth contact dynamics approach of cohesive materials, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci., Volume 359 (2001) no. 1789, pp. 2497-2518
[40] A Gauss–Seidel like algorithm to solve frictional contact problems, Comput. Methods Appl. Mech. Eng., Volume 155 (1998) no. 1, pp. 31-47
[41] Force transmission in a packing of pentagonal particles, Phys. Rev. E, Volume 76 (2007) no. 1
[42] Packings of irregular polyhedral particles: strength, structure, and effects of angularity, Phys. Rev. E, Volume 87 (2013) no. 6
[43] Numerical tribology of a dry contact, Tribol. Int., Volume 44 (2011) no. 7, pp. 834-844
[44] Multiphysical modeling of third-body rheology, Tribol. Int., Volume 44 (2011) no. 4, pp. 417-425
[45] Modelling ballast behaviour under dynamic loading. Part 1: A 2D polygonal discrete element method approach, Comput. Methods Appl. Mech. Eng., Volume 195 ( apr 2006 ) no. 19–22, pp. 2841-2859
[46] Finite element-discrete element coupling strategies for the modelling of ballast-soil interaction, Int. J. Railway Technol., Volume 4 (2015) no. 2, pp. 73-95
[47] Contribution à la modélisation mécanique et numérique des édifices maçonnés, Université Aix-Marseille 2, 2001 (PhD thesis)
[48] Apport de la méthode des éléments discrets à la modélisation des maçonneries en contexte sismique: vers une nouvelle approche de la vulnérabilité sismique, Université Montpellier-2, 2013 (PhD thesis)
[49] Modelling and analysis of the nîmes arena and the arles aqueduct subjected to a seismic loading, using the non-smooth contact dynamics method, Eng. Struct., Volume 30 (2008) no. 12, pp. 3457-3467
[50] Landsliding generated by thermomechanical interactions between rock columns and wedging blocks: study case from the Larzac Plateau (Southern France), EPJ Web of Conferences, vol. 140, EDP Sciences, 2017, p. 14012
[51] Realistic haptic rendering of interacting deformable objects in virtual environments, IEEE Trans. Vis. Comput. Graph., Volume 12 (2006), pp. 36-47
[52] Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-alpha scheme, Comput. Methods Appl. Mech. Eng., Volume 281 ( nov 2014 ), pp. 131-161
[53] Constructions en pierres sèches : la vision du mécanicien, Pierre sèche: théorie et pratique d'un système de construction traditionnel, Eyroles, 2017 (chapter 6, isbn 2212673515, 9782212673517)
[54] Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer, 2006
[55] Energy conservation and dissipation properties of time-integration methods for nonsmooth elastodynamics with contact, Z. Angew. Math. Mech. (Zeitschrift für Angewandte Mathematik und Mechanik), Volume 96 (2016) no. 5, pp. 585-603
[56] Multiple Impacts in Dissipative Granular Chains, Lecture Notes in Applied and Computational Mechanics, vol. 72, Springer Verlag, 2014 (XXII, 234 p., 109 illus)
[57] Facing the plurality of solutions in nonsmooth mechanics (C.C. Baniotopoulos, ed.), Nonsmooth/Nonconvex Mechanics with Applications in Engineering. International Conference in Memoriam of P.D. Panagiotopoulos, vol. 2006, Ziti, Perea, Thessaloniki, 2006, pp. 3-12
[58] Modélisation du comportement mécanique par éléments discrets des ouvrages maçonnés tridimensionnels. Contribution à la définition d'éléments de contacts surfaciques, Université de Montpellier-2, France, 2007 (PhD thesis)
[59] How to overcome indetermination and interpenetration in granular systems via nonsmooth contact dynamics. An exploratory investigation, Comput. Methods Appl. Mech. Eng., Volume 270 (2014), pp. 37-56
[60] On inconsistency in frictional granular systems, Comput. Part. Mech. (2017), pp. 1-14 | DOI
[61] Contact dynamics as a nonsmooth discrete element method, Mech. Mater., Volume 41 (2009) no. 6, pp. 715-728
[62] Optimisation numérique et calcul parallèle pour l'étude de milieux divisés bi- et tri-dimensionnels, Université Montpellier-2, France, 2004 (PhD thesis)
[63] Conjugate gradient type algorithms for frictional multi-contact problems: applications to granular materials, Comput. Methods Appl. Mech. Eng., Volume 194 (2005) no. 18–20, pp. 2019-2041
[64] A parallel version of the non smooth contact dynamics algorithm applied to the simulation of granular media, J. Comput. Appl. Math., Volume 168 ( jul 2004 ) no. 1–2, pp. 375-382
[65] Distributed nonsmooth contact domain decomposition (NSCDD): algorithmic structure and scalability, 21th Domain Decomposition International Conference, 2014, pp. 627-636
[66] On frictionless impact models in rigid-body systems, Philos. Trans. R. Soc. Ser. A, Math. Phys. Eng. Sci., Volume 359 (2001), pp. 2385-2404
[67] Experimental treatment of multiple – contact – collisions, August (2005), pp. 7-12
[68] Rigid bodies collisions, Phys. Lett. A, Volume 204 (1995) no. 1, pp. 33-41
[69] Multiple impacts with friction in the rocking block, Euromech 2011, vol. 2, 2011, pp. 6-7
[70] Recherches concernant les contraintes intergranulaires dans les milieux pulvérulents, Bull. Liaison Ponts Chauss., Volume 20 (1966), pp. 3-20
[71] Construction of an averaged stress tensor for a granular medium, Eur. J. Mech. A, Solids, Volume 22 (2003) no. 4, pp. 567-582
[72] NSCD discrete element method for modelling masonry structures, Int. J. Numer. Methods Eng., Volume 64 (2005) no. 1, pp. 65-94
[73] The stress tensor in granular media and in other mechanical collections (B. Cambou; M. Jean; F. Radjai, eds.), Micromechanics of Granular Material, Iste, Wiley, 2009, pp. 51-100
[74] Impact of interaction laws and particle modeling in discrete element simulations, AIP Conference Proceedings, 2009, pp. 1-4
[75] Coupling continuous and discontinuous descriptions to model first body deformation in third body flows, J. Tribol., Volume 133 (2011) no. 4
[76] The dynamics of flexible bodies, Int. J. Eng. Sci., Volume 14 (1976) no. 3, pp. 895-913
[77] Equivalence of the floating frame of reference approach and finite element formulations, Int. J. Non-Linear Mech., Volume 33 (1998) no. 3, pp. 417-432
[78] A unified formulation of small-strain corotational finite elements: I. Theory, Comput. Methods Appl. Mech. Eng., Volume 194 ( jun 2005 ) no. 21–24, pp. 2285-2335
[79] Multibody contact dynamics with corotational finite elements and rough background mesh, PARTICLES 2011 (2011), pp. 1-12
[80] The method of a floating frame of reference for non-smooth contact dynamics, Eur. J. Mech. A, Solids, Volume 58 (2016), pp. 89-101
Cited by Sources:
Comments - Policy