This paper deals with the non-linear vibration of sandwich viscoelastic shell structures. Coupling a harmonic balance method with the Galerkin's procedure, one obtains an amplitude equation depending on two complex coefficients. The latter are determined by solving a classical eigenvalue problem and two linear ones. This permits to get the non-linear frequency and the non-linear loss factor as functions of the displacement amplitude. To validate our approach, these relationships are illustrated in the case of a circular sandwich ring.
Accepted:
Published online:
Lahcen Benchouaf 1; El Hassan Boutyour 1; El Mostafa Daya 2; Michel Potier-Ferry 2
@article{CRMECA_2018__346_4_308_0, author = {Lahcen Benchouaf and El Hassan Boutyour and El Mostafa Daya and Michel Potier-Ferry}, title = {Non-linear vibrations of sandwich viscoelastic shells}, journal = {Comptes Rendus. M\'ecanique}, pages = {308--319}, publisher = {Elsevier}, volume = {346}, number = {4}, year = {2018}, doi = {10.1016/j.crme.2017.12.013}, language = {en}, }
TY - JOUR AU - Lahcen Benchouaf AU - El Hassan Boutyour AU - El Mostafa Daya AU - Michel Potier-Ferry TI - Non-linear vibrations of sandwich viscoelastic shells JO - Comptes Rendus. Mécanique PY - 2018 SP - 308 EP - 319 VL - 346 IS - 4 PB - Elsevier DO - 10.1016/j.crme.2017.12.013 LA - en ID - CRMECA_2018__346_4_308_0 ER -
Lahcen Benchouaf; El Hassan Boutyour; El Mostafa Daya; Michel Potier-Ferry. Non-linear vibrations of sandwich viscoelastic shells. Comptes Rendus. Mécanique, Volume 346 (2018) no. 4, pp. 308-319. doi : 10.1016/j.crme.2017.12.013. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.12.013/
[1] Composite damping of vibrating sandwich beams, J. Eng. Ind., Volume 89 (1967) no. 4, pp. 633-638
[2] The forced vibration of three-layer damped sandwich beam with arbitrary boundary conditions, J. Sound Vib., Volume 10 (1969), pp. 163-175
[3] Governing equations for vibrating constrained-layer damping sandwich plates and beams, J. Appl. Mech., Volume 94 (1972), pp. 1041-1047
[4] New approximate method of finding the loss factors of a sandwich cantilever, J. Sound Vib., Volume 33 (1974), pp. 335-352
[5] Frequency and loss factors of sandwich beams under various boundary conditions, J. Mech. Eng. Sci., Volume 20 (1978) no. 5, pp. 271-282
[6] Dynamic optimisation of a sandwich beam, Comput. Struct., Volume 19 (1984) no. 4, pp. 605-615
[7] Vibration and damping analysis of three-layered composite plate with viscoelastic mid-layer, J. Sound Vib., Volume 183 (1995) no. 1, pp. 99-114
[8] Vibration analysis of viscoelastically damped sandwich shells, Shock Vib. Bull., Volume 3 (1996) no. 6, pp. 403-417
[9] The frequency response and damping effect of three-layer thin shell with viscoelastic core, Comput. Struct., Volume 76 (2000), pp. 577-591
[10] Vibration analysis of a damped arch using iterative laminate model, J. Sound Vib., Volume 254 (2002) no. 2, pp. 367-378
[11] Finite element analysis of viscoelastically damped sandwich structures, Shock Vib. Bull., Volume 55 (1981) no. 1, pp. 97-109
[12] A finite element analysis of viscoelastically damped sandwich plates, J. Sound Vib., Volume 152 (1992), pp. 107-123
[13] Finite element analysis of damping the vibrations of laminated composites, Comput. Struct., Volume 47 (1993) no. 6, pp. 1005-1015
[14] Finite element prediction of damping in beams with constrained viscoelastic layer, Shock Vib. Bull., Volume 51 (1981) no. 1, pp. 71-81
[15] Vibrations of three layered damped sandwich plate composites, J. Sound Vib., Volume 64 (1979) no. 1, pp. 63-71
[16] The Galerkin element method applied to the vibration of damped sandwich beams, Comput. Struct., Volume 71 (1999), pp. 239-256
[17] Finite element analysis of conical shells with a constrained viscoelastic layer, J. Sound Vib., Volume 171 (1994) no. 5, pp. 577-601
[18] A finite element model for harmonically excited viscoelastic sandwich beams, Comput. Struct., Volume 66 (1998) no. 1, pp. 105-113
[19] Vibration and damping of multi layered cylindrical shell. Part I and II, AIAA J., Volume 22 (1984), pp. 803-810 (975–981)
[20] A numerical method for nonlinear eigenvalue problem, application to vibrations of viscoelastic structures, Comput. Struct., Volume 79 (2001) no. 5, pp. 533-541
[21] Damping prediction of sandwich structures by order-reduction-iteration approach, J. Sound Vib., Volume 222 (1999) no. 5, pp. 803-812
[22] A shell finite element for viscoelastically damped sandwich structures, Rev. Eur. Elém. Fin., Volume 11 (2002) no. 1, pp. 39-56
[23] Non-linear vibration of a multilayer sandwich beam with viscoelastic layers, J. Sound Vib., Volume 216 (1998) no. 4, pp. 601-621
[24] An amplitude equation for the non-linear vibration of viscoelastically damped sandwich beams, J. Sound Vib., Volume 271 (2003) no. 3, pp. 789-813
[25] Large amplitude free flexural vibration of rings using finite element approach, Int. J. Non-Linear Mech., Volume 37 (2003), pp. 911-921
[26] Flexural loss factors of sandwich and laminated beams using linear and nonlinear dynamic analysis, Composites, Part B, Eng., Volume 30 (1999), pp. 245-256
[27] A harmonic balance method for the non-linear vibration of viscoelastic shell, C. R. Mecanique, Volume 334 (2006), pp. 68-73
[28] A reduction model for eigensolutions of damped viscoelastic sandwich structures, Mech. Res. Commun., Volume 57 (2014), pp. 74-81
[29] Forced harmonic response of viscoelastic sandwich beams by a reduction method, Mech. Adv. Mat. Struct., Volume 23 (2016) no. 11, pp. 1290-1299
[30] Nonlinear vibrations of viscoelastic rectangular plates, J. Sound Vib., Volume 362 (2016) no. 3, pp. 142-156
[31] Vibration modeling of large repetitive sandwich structures with viscoelastic core, Mech. Adv. Mat. Struct., Volume 23 (2016) no. 4, pp. 458-466
[32] Erratum to “Eigenmode sensitivity of damped sandwich structures” [C. R. Mecanique 342 (2014) 700–705], C. R. Mecanique, Volume 343 (2015) no. 3, p. 246
[33] A gradient method for viscoelastic behaviour identification of damped sandwich structures, C. R. Mecanique, Volume 340 (2012) no. 8, pp. 619-623
[34] Nonlinear Oscillations, Wiley, New York, 1979
Cited by Sources:
Comments - Policy