In this paper, we extend the energy-Casimir stability method for deterministic Lie–Poisson Hamiltonian systems to provide sufficient conditions for stability in probability of stochastic dynamical systems with symmetries. We illustrate this theory with classical examples of coadjoint motion, including the rigid body, the heavy top, and the compressible Euler equation in two dimensions. The main result is that stable deterministic equilibria remain stable in probability up to a certain stopping time that depends on the amplitude of the noise for finite-dimensional systems and on the amplitude of the spatial derivative of the noise for infinite-dimensional systems.
Dans cet article, nous étendons la méthode d'énergie-Casimir de stabilité des systèmes déterministes hamiltoniens de Lie–Poisson afin de fournir des conditions suffisantes de stabilité en probabilité des systèmes dynamiques stochastiques par des symétries. Nous illustrons cette théorie par des exemples classiques de mouvements coadjoints, comme le corps solide, la toupie pesante et l'équation d'Euler compressible en deux dimensions. Le principal résultat de cette extension est que les équilibres relatifs déterministes stables restent stables en probabilité jusqu'à un certain temps d'arrêt. Ce dernier dépend, d'une part, de l'amplitude du bruit pour les systèmes de dimensions finies et, d'autre part, de l'amplitude de la dérivée spatiale du bruit pour les systèmes de dimensions infinies.
Accepted:
Published online:
Mot clés : Mécanique géométrique stochastique, Méthode d'énergie-Casimir, Stabilité stochastique
Alexis Arnaudon 1; Nader Ganaba 1; Darryl D. Holm 1
@article{CRMECA_2018__346_4_279_0, author = {Alexis Arnaudon and Nader Ganaba and Darryl D. Holm}, title = {The stochastic {energy-Casimir} method}, journal = {Comptes Rendus. M\'ecanique}, pages = {279--290}, publisher = {Elsevier}, volume = {346}, number = {4}, year = {2018}, doi = {10.1016/j.crme.2018.01.003}, language = {en}, }
Alexis Arnaudon; Nader Ganaba; Darryl D. Holm. The stochastic energy-Casimir method. Comptes Rendus. Mécanique, Volume 346 (2018) no. 4, pp. 279-290. doi : 10.1016/j.crme.2018.01.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.01.003/
[1] Sur la géométrie différentielle des groupes de lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier, Volume 16 (1966) no. 1, pp. 319-361
[2] Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math. (2), Volume 92 (1970) no. 1, pp. 102-163
[3] Conditions for non-linear stability of plane steady curvilinear flows of an ideal fluid, Dokl. Akad. Nauk SSSR, Volume 162 (1965) no. 5, pp. 773-777
[4] An a priori estimate in the theory of hydrodynamic stability, Izv. Vysš. Učebn. Zaved., Mat., Volume 5 (1966), pp. 3-5
[5] Nonlinear stability of fluid and plasma equilibria, Phys. Rep., Volume 123 (1985) no. 1, pp. 1-116
[6] Stability of relative equilibria. Part I: the reduced energy-momentum method, Arch. Ration. Mech. Anal., Volume 115 (1991) no. 1, pp. 15-59
[7] Mécanique aléatoire, Saint Flour, 1980 (Lecture Notes in Math.), Volume vol. 929, Springer, Berlin–New York (1980), pp. 1-100
[8] Stochastic Hamiltonian dynamical systems, Rep. Math. Phys., Volume 61 (2008) no. 1, pp. 65-122
[9] D.D. Holm, Variational principles for stochastic fluid dynamics, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 471(2176).
[10] Noise and dissipation on coadjoint orbits, J. Nonlinear Sci., Volume 28 (2018) no. 1, pp. 91-145 | DOI
[11] Momentum maps and stochastic Clebsch action principles, Commun. Math. Phys. (2017) | DOI
[12] Dirac structures in Lagrangian mechanics. Part II: variational structures, J. Geom. Phys., Volume 57 (2006) no. 1, pp. 209-250 | DOI
[13] Reduction of Dirac structures and the Hamilton–Pontryagin principle, Rep. Math. Phys., Volume 60 (2007) no. 3, pp. 381-426 | DOI
[14] Nonholonomic Mechanics and Control, Interdiscip. Appl. Math., Springer, New York, NY, 2015
[15] Geometric Mechanics. Part II: Rotating, Translating and Rolling, Imperial College Press, London, 2008 (distributed by World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ)
[16] Introduction to Mechanics and Symmetry, Texts Appl. Math., vol. 17, Springer-Verlag, New York, 1999 (A basic exposition of classical mechanical systems)
[17] Stochastic geometric models with non-stationary spatial correlations in Lagrangian fluid flows, J. Nonlinear Sci. (2018) | DOI
[18] The Euler–Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., Volume 137 (1998) no. 1, pp. 1-81
[19] Numerical Solution of Stochastic Differential Equations, Appl. Math., Springer-Verlag, 1992
[20] Stochastic Stability of Differential Equations, vol. 66, Springer Science & Business Media, 2011
[21] Stochastic Differential Equations: An Introduction with Applications, Universitext, 2003
[22] The heavy top: a geometric treatment, Nonlinearity, Volume 5 (1992) no. 1, p. 1
[23] Existence and uniqueness for stochastic 2D Euler flows with bounded vorticity, Arch. Ration. Mech. Anal., Volume 221 (2016) no. 1, pp. 107-142
[24] Stabilization of rigid body dynamics by the energy-Casimir method, Syst. Control Lett., Volume 14 (1990) no. 4, pp. 341-346
Cited by Sources:
Comments - Policy