Even if the diffusion equation has been widely used in physics and engineering, and its physical content is well understood, some variants of it escape fully physical understanding. In particular, anormal diffusion appears in the so-called fractional diffusion equation, whose main particularity is its non-local behavior, whose physical interpretation represents the main part of the present work.
Accepted:
Published online:
Enrique Nadal 1; Emmanuelle Abisset-Chavanne 2; Elias Cueto 3; Francisco Chinesta 4
@article{CRMECA_2018__346_7_581_0, author = {Enrique Nadal and Emmanuelle Abisset-Chavanne and Elias Cueto and Francisco Chinesta}, title = {On the physical interpretation of fractional diffusion}, journal = {Comptes Rendus. M\'ecanique}, pages = {581--589}, publisher = {Elsevier}, volume = {346}, number = {7}, year = {2018}, doi = {10.1016/j.crme.2018.04.004}, language = {en}, }
TY - JOUR AU - Enrique Nadal AU - Emmanuelle Abisset-Chavanne AU - Elias Cueto AU - Francisco Chinesta TI - On the physical interpretation of fractional diffusion JO - Comptes Rendus. Mécanique PY - 2018 SP - 581 EP - 589 VL - 346 IS - 7 PB - Elsevier DO - 10.1016/j.crme.2018.04.004 LA - en ID - CRMECA_2018__346_7_581_0 ER -
Enrique Nadal; Emmanuelle Abisset-Chavanne; Elias Cueto; Francisco Chinesta. On the physical interpretation of fractional diffusion. Comptes Rendus. Mécanique, Model reduction, data-based and advanced discretization in computational mechanics / Réduction de modèles, données et techniques de discrétisation avancées en mécanique numérique, Volume 346 (2018) no. 7, pp. 581-589. doi : 10.1016/j.crme.2018.04.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.04.004/
[1] Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations, Proc. R. Soc. A, Volume 469 (2012)
[2] Stochastic pathway to anomalous diffusion, Phys. Rev. A, Volume 35 (1987) no. 7, pp. 3081-3085
[3] The random walks guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., Volume 339 (2000), pp. 1-77
[4] A Journey Around the Different Scales Involved in the Description of Matter and Complex Systems, SpringerBriefs in Applied Science and Technology, Springer, 2018
[5] Fractional modelling of functionalized CNT suspensions, Rheol. Acta, Volume 54 (2015) no. 2, pp. 109-119
[6] The rheology and modelling of chemically treated carbon nanotube suspensions, J. Rheol., Volume 53 (2009) no. 3, pp. 547-573
[7] A physically-based fractional diffusion model for semi-dilute suspensions of rods in a Newtonian fluid, Appl. Math. Model., Volume 51 (2017), pp. 58-67
[8] Anomalous heat conduction and anomalous diffusion in one-dimensional systems, Phys. Rev. Lett., Volume 91 (2003) no. 4
[9] Elasticity of fractal materials using the continuum model with non-integer dimensional space, C. R. Mecanique, Volume 343 (2015) no. 1, pp. 57-73
[10] A fractional calculus approach to the mechanics of fractal media, Rend. Semin. Mat., Volume 1 (2000), pp. 57-68
[11] Fractional Differential Equations, Academic Press, San Diego, CA, USA, 1999
[12] Theory and Applications of Fractional Differential Equations, Elsevier, 2006
[13] Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., Volume 34 (2010), pp. 200-218
[14] A physical interpretation for the fractional derivative in Levy diffusion, Appl. Math. Lett., Volume 15 (2002), pp. 907-911
[15] Anomalous heat conduction in one-dimensional momentum-conserving systems, Phys. Rev. Lett., Volume 89 (2002)
[16] Heat in one dimension, Nature, Volume 421 (2003) no. 23, p. 327
Cited by Sources:
Comments - Policy