Comptes Rendus
Computational modeling of material forming processes / Simulation numérique des procédés de mise en forme
A microscale finite element model for joining of metals by large plastic deformations
Comptes Rendus. Mécanique, Computational modeling of material forming processes Simulation numérique des procédés de mise en forme, Volume 346 (2018) no. 8, pp. 743-755.

The paper aims to present a finite element model for the bonding process of metals at the microscale. To accomplish this, first, the mechanism of joining by plastic deformation at the microscopic level is explained. Then, based on the film theory of bonding, a finite element model is developed, which enables to simulate the bonding process between metallic layers subjected to large plastic deformation. The model presented in this paper takes into account the most important physical micro-mechanisms taking place during the bond formation process, i.e. (1) the breakage of the brittle oxide layer above the metallic surfaces, (2) the decohesion process occurring between the oxide layer and the metal substrate, (3) the extrusion of the substrate into the created cracks under large plastic deformations, and (4) the bond formation in between the fractured oxide layers. In addition, an extended version of a cohesive zone model is proposed to describe the bond formation between the metal surfaces. Finally, it is shown that the model can be used to provide a description regarding bond strength evolution. In this context, the effects of influencing factors, such as the degree of deformation and the thickness of the oxide layer, are numerically investigated. The presented finite element model can be regarded as a useful tool to characterize the key factors in joining processes such as roll bonding and cold forging.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2018.05.005
Mots-clés : Joining by plastic deformation, Solid-state welding, Bonding and de-bonding, Cohesive zone element, Film theory

Kavan Khaledi 1 ; Shahed Rezaei 1 ; Stephan Wulfinghoff 1 ; Stefanie Reese 1

1 Institute of Applied Mechanics, RWTH Aachen University, 52074 Aachen, Germany
@article{CRMECA_2018__346_8_743_0,
     author = {Kavan Khaledi and Shahed Rezaei and Stephan Wulfinghoff and Stefanie Reese},
     title = {A microscale finite element model for joining of metals by large plastic deformations},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {743--755},
     publisher = {Elsevier},
     volume = {346},
     number = {8},
     year = {2018},
     doi = {10.1016/j.crme.2018.05.005},
     language = {en},
}
TY  - JOUR
AU  - Kavan Khaledi
AU  - Shahed Rezaei
AU  - Stephan Wulfinghoff
AU  - Stefanie Reese
TI  - A microscale finite element model for joining of metals by large plastic deformations
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 743
EP  - 755
VL  - 346
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crme.2018.05.005
LA  - en
ID  - CRMECA_2018__346_8_743_0
ER  - 
%0 Journal Article
%A Kavan Khaledi
%A Shahed Rezaei
%A Stephan Wulfinghoff
%A Stefanie Reese
%T A microscale finite element model for joining of metals by large plastic deformations
%J Comptes Rendus. Mécanique
%D 2018
%P 743-755
%V 346
%N 8
%I Elsevier
%R 10.1016/j.crme.2018.05.005
%G en
%F CRMECA_2018__346_8_743_0
Kavan Khaledi; Shahed Rezaei; Stephan Wulfinghoff; Stefanie Reese. A microscale finite element model for joining of metals by large plastic deformations. Comptes Rendus. Mécanique, Computational modeling of material forming processes
Simulation numérique des procédés de mise en forme, Volume 346 (2018) no. 8, pp. 743-755. doi : 10.1016/j.crme.2018.05.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.05.005/

[1] N. Bay Cold welding. Part 1: characteristics, bonding mechanisms, bond strength, Met. Constr. (1986), pp. 369-372

[2] W. Zhang; N. Bay Cold welding—theoretical modeling of the weld formation, Weld. J., Volume 76 (1997) no. 10, pp. 417-430

[3] D.R. Cooper; J.M. Allwood The influence of deformation conditions in solid-state aluminium welding processes on the resulting weld strength, J. Mater. Process. Technol., Volume 214 (2014) no. 11, pp. 2576-2592

[4] M. Bambach; M. Pietryga; A. Mikloweit; G. Hirt A finite element framework for the evolution of bond strength in joining-by-forming processes, J. Mater. Process. Technol., Volume 214 (2014) no. 10, pp. 2156-2168

[5] W. Zhang; N. Bay Cold welding: experimental investigation of the surface preparation methods, Weld. J., Volume 76 (1997) no. 8, pp. 326-330

[6] R. Kebriaei; I. Vladimirov; S. Reese Joining of the alloys AA1050 and AA5754—experimental characterization and multiscale modeling based on a cohesive zone element technique, J. Mater. Process. Technol., Volume 214 (2014) no. 10, pp. 2146-2155

[7] N. Bay Mechanisms producing metallic bonds in cold welding, Weld. J., Volume 62 (1983) no. 5, pp. 137-141

[8] R.L. Taylor, FEAP—A Finite Element Analysis Program, Version 8.4 Theory Manual, Department of Civil and Environmental Engineering University of California at Berkeley, USA.

[9] C. Clemensen; O. Juelstorp; N. Bay Cold welding. Part 3: influence of surface preparation on bond strength, Met. Constr. (1986), pp. 625-629

[10] R. Jamaati; S. Amirkhanlou; M.R. Toroghinejad; B. Niroumand Significant improvement of semi-solid microstructure and mechanical properties of A356 alloy by ARB process, Mater. Sci. Eng., A, Volume 528 (2011) no. 6, pp. 2495-2501

[11] P. Groche; S. Wohletz; A. Erbe; A. Altin Effect of the primary heat treatment on the bond formation in cold welding of aluminum and steel by cold forging, J. Mater. Process. Technol., Volume 214 (2014) no. 10, pp. 2040-2048

[12] H. Conrad; L. Rice The cohesion of previously fractured fcc metals in ultrahigh vacuum, Metall. Mater. Trans., B, Volume 1 (1970) no. 11, pp. 3019-3029

[13] C. Xie; W. Tong Cracking and decohesion of a thin Al2O3 film on a ductile Al–5% Mg substrate, Acta Mater., Volume 53 (2005) no. 2, pp. 477-485

[14] R.L. Taylor, G. Zavarise, FEAP—A Finite Element Analysis Program, Version 8.4 Contact Programmer Manual, Department of Civil and Environmental Engineering University of California at Berkeley, USA.

[15] G. Alfano; M.A. Crisfield Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues, Int. J. Numer. Methods Eng., Volume 50 (2001) no. 7, pp. 1701-1736

[16] H. Li; N. Chandra Analysis of crack growth and crack-tip plasticity in ductile materials using cohesive zone models, Int. J. Plast., Volume 19 (2003) no. 6, pp. 849-882

[17] S. Wulfinghoff A generalized cohesive zone model and a grain boundary yield criterion for gradient plasticity derived from surface-and interface-related arguments, Int. J. Plast., Volume 92 (2017), pp. 57-78

[18] D. Höwer; B.A. Lerch; B.A. Bednarcyk; E.J. Pineda; S. Reese; J.-W. Simon Cohesive zone modeling for mode i facesheet to core delamination of sandwich panels accounting for fiber bridging, Compos. Struct. (2017) | DOI

[19] M. Heidari-Rarani; M. Shokrieh; P. Camanho Finite element modeling of mode I delamination growth in laminated DCB specimens with R-curve effects, Composites, Part B, Eng., Volume 45 (2012) no. 1, pp. 897-903

[20] A. Pouya; P.B. Yazdi A damage-plasticity model for cohesive fractures, Int. J. Rock Mech. Min. Sci., Volume 73 (2015), pp. 194-202

[21] K. Park; K. Ha; H. Choi; C. Lee Prediction of interfacial fracture between concrete and fiber reinforced polymer (FRP) by using cohesive zone modeling, Cem. Concr. Compos., Volume 63 (2015), pp. 122-131

[22] K. Park; G.H. Paulino Cohesive zone models: a critical review of traction–separation relationships across fracture surfaces, Appl. Mech. Rev., Volume 64 (2011) no. 6

[23] S. Rezaei; S. Wulfinghoff; S. Reese Prediction of fracture and damage in micro/nano coating systems using cohesive zone elements, Int. J. Solids Struct., Volume 121 (2017), pp. 62-74 | DOI

[24] D.C. Agrawal; R. Raj Measurement of the ultimate shear strength of a metal–ceramic interface, Acta Metall., Volume 37 (1989) no. 4, pp. 1265-1270

[25] M. Nagl; S. Saunders; W. Evans; D. Hall The tensile failure of nickel oxide scales at ambient and at growth temperature, Corros. Sci., Volume 35 (1993) no. 5–8, pp. 965971-969977

[26] B. Picqué; P.-O. Bouchard; P. Montmitonnet; M. Picard Mechanical behaviour of iron oxide scale: experimental and numerical study, Wear, Volume 260 (2006) no. 3, pp. 231-242

[27] A. Taylor; V. Edlmayr; M. Cordill; G. Dehm The effect of film thickness variations in periodic cracking: analysis and experiments, Surf. Coat. Technol., Volume 206 (2011) no. 7, pp. 1830-1836

[28] S. Rezaei; M. Arghavani; S. Wulfinghoff; N.C. Kruppe; T. Brögelmann; S. Reese; K. Bobzin A novel approach for the prediction of deformation and fracture in hard coatings: comparison of numerical modeling and nanoindentation tests, Mech. Mater., Volume 117 (2018), pp. 192-201 | DOI

  • Yanjun Wang; Yi Jia; Shuzhi Zhang; Shouzhen Cao; Xinlong Zhang; Wei Zhang; Changjiang Zhang; Zhaoping Hou; Jianchao Han; Tao Wang Comprehensive evaluation of the effect of large extrusion ratio on the microstructure and performance of Al/Al bimetallic composite tubes, Journal of Materials Processing Technology, Volume 338 (2025), p. 118783 | DOI:10.1016/j.jmatprotec.2025.118783
  • Matthew R. Standley; Marko Knezevic Accumulative extrusion bonding of Cu/Al bimetallic tubes: Design, fabrication, characterization, testing, and modeling, Journal of Materials Research and Technology, Volume 36 (2025), p. 1860 | DOI:10.1016/j.jmrt.2025.03.236
  • Xenophon Zabulis; Nikolaos Partarakis; Ioannna Demeridou; Valentina Bartalesi; Nicolò Pratelli; Carlo Meghini; Nikolaos Nikolaou; Peiman Fallahian Modelling and Simulation of Traditional Craft Actions, Applied Sciences, Volume 14 (2024) no. 17, p. 7750 | DOI:10.3390/app14177750
  • Tao Wang; Wenqiang Zhao; Yuliang Yun; Zixuan Li; Zhihua Wang; Qingxue Huang A dynamic composite rolling model based on Lemaitre damage theory, International Journal of Mechanical Sciences, Volume 269 (2024), p. 109067 | DOI:10.1016/j.ijmecsci.2024.109067
  • Adriano A. Trajano; Elaine Carballo Siqueira Corrêa; Maria Teresa P. Aguilar; Paulo Roberto Cetlin Accumulative roll bonding (ARB) and Cross accumulative roll bonding (CARB) in aluminum: A review, Materials Science and Technology (2024) | DOI:10.1177/02670836241303270
  • Mahsa Navidirad; John E. Plumeri; Natasha Vermaak; Masashi Watanabe; Wojciech Z. Misiolek Physical and Numerical Modeling of Micro-extrusion Behavior of AA3xxx Aluminum Alloy in Cold Roll Bonding, Proceedings of the 14th International Conference on the Technology of Plasticity - Current Trends in the Technology of Plasticity (2024), p. 291 | DOI:10.1007/978-3-031-41023-9_30
  • Zixuan LI; Shahed REZAEI; Tao WANG; Jianchao HAN; Xuedao SHU; Zbigniew PATER; Qingxue HUANG Recent advances and trends in roll bonding process and bonding model: A review, Chinese Journal of Aeronautics, Volume 36 (2023) no. 4, p. 36 | DOI:10.1016/j.cja.2022.07.004
  • Matthew R. Standley; Md. Zahidul Sarkar; Ethan E. Costa; Marko Knezevic Evolution of microstructure and strength during accumulative extrusion bonding of multilayered copper tubes, Materials Characterization, Volume 201 (2023), p. 112940 | DOI:10.1016/j.matchar.2023.112940
  • Shahed Rezaei; Jacob Niikoi Okoe-Amon; Cerun Alex Varkey; Armin Asheri; Hui Ruan; Bai-Xiang Xu A cohesive phase-field fracture model for chemo-mechanical environments: Studies on degradation in battery materials, Theoretical and Applied Fracture Mechanics, Volume 124 (2023), p. 103758 | DOI:10.1016/j.tafmec.2023.103758
  • Juergen A. Nietsch; Moritz Gouverneur; Christian Schwab; David Bailly; Manfred Martin; Gerhard Hirt Bonding Experiments at Elevated Temperatures: The Effect of the Sample Storage Time on the Bond Strength of Metals, steel research international, Volume 94 (2023) no. 1 | DOI:10.1002/srin.202200462
  • Yaping Wang; Yuehan Liu; Jing-Hua Zheng; Bo Lan; Jun Jiang Develop a new strain rate sensitive solid-state pressure bonding model, Materials Design, Volume 215 (2022), p. 110436 | DOI:10.1016/j.matdes.2022.110436
  • Yaping Wang; Yuehan Liu; Shieu Daryl Pay; Bo Lan; Jun Jiang A study of solid-state bonding-by-hot-deforming mechanism in Inconel 718, Journal of Materials Processing Technology, Volume 295 (2021), p. 117191 | DOI:10.1016/j.jmatprotec.2021.117191
  • Denis J. Politis; Nicholas J. Politis; Jianguo Lin Review of recent developments in manufacturing lightweight multi-metal gears, Production Engineering, Volume 15 (2021) no. 2, p. 235 | DOI:10.1007/s11740-020-01011-5
  • Shahed Rezaei; Jaber Rezaei Mianroodi; Kavan Khaledi; Stefanie Reese A nonlocal method for modeling interfaces: Numerical simulation of decohesion and sliding at grain boundaries, Computer Methods in Applied Mechanics and Engineering, Volume 362 (2020), p. 112836 | DOI:10.1016/j.cma.2020.112836
  • Stefan Guenther; Gideon Schwich; Gerhard Hirt Investigation of bond formation behaviour in composite ring rolling, Journal of Materials Processing Technology, Volume 275 (2020), p. 116364 | DOI:10.1016/j.jmatprotec.2019.116364
  • Liying Zhou; Wenxiong Chen; Shaobo Feng; Mingyue Sun; Bin Xu; Dianzhong Li Dynamic recrystallization behavior and interfacial bonding mechanism of 14Cr ferrite steel during hot deformation bonding, Journal of Materials Science Technology, Volume 43 (2020), p. 92 | DOI:10.1016/j.jmst.2020.01.010
  • Kavan Khaledi; Shahed Rezaei; Stephan Wulfinghoff; Stefanie Reese Modeling of joining by plastic deformation using a bonding interface finite element, International Journal of Solids and Structures, Volume 160 (2019), p. 68 | DOI:10.1016/j.ijsolstr.2018.10.014
  • Shahed Rezaei; David Jaworek; Jaber Rezaei Mianroodi; Stephan Wulfinghoff; Stefanie Reese Atomistically motivated interface model to account for coupled plasticity and damage at grain boundaries, Journal of the Mechanics and Physics of Solids, Volume 124 (2019), p. 325 | DOI:10.1016/j.jmps.2018.10.015
  • Jian Yang Zhang; Ming Yue Sun; Bin Xu; Xin Hu; Sheng Liu; Bi Jun Xie; Dian Zhong Li Evolution of the interfacial microstructure during the plastic deformation bonding of copper, Materials Science and Engineering: A, Volume 746 (2019), p. 1 | DOI:10.1016/j.msea.2018.12.119
  • K. Khaledi; T. Brepols; S. Reese Numerical simulation of periodic cracking mechanism in microscopic surface films during roll bonding processes, Materialwissenschaft und Werkstofftechnik, Volume 50 (2019) no. 8, p. 1039 | DOI:10.1002/mawe.201900035
  • Kavan Khaledi; Tim Brepols; Stefanie Reese A multiscale description of bond formation in cold roll bonding considering periodic cracking of thin surface films, Mechanics of Materials, Volume 137 (2019), p. 103142 | DOI:10.1016/j.mechmat.2019.103142
  • Kavan Khaledi; Lukas Poggenpohl; Stefanie Reese, PROCEEDINGS OF THE 22ND INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING: ESAFORM 2019, Volume 2113 (2019), p. 050030 | DOI:10.1063/1.5112594

Cité par 22 documents. Sources : Crossref

Commentaires - Politique