Comptes Rendus
Computational modelling of material forming processes / Simulation numérique des procédés de mise en forme
Multiscale modelling of asymmetric rolling with an anisotropic constitutive law
Comptes Rendus. Mécanique, Volume 346 (2018) no. 8, pp. 724-742.

A parametric study is presented, which employs a new anisotropic constitutive law in order to study the influence of anisotropic plasticity on the deformation field of the Asymmetric Rolling (ASR) process. A version of the facet method is presented, where an analytical yield function is restricted to the subspace of the stress and strain rate space relevant for 2D Finite Element Analysis (FEA), but can still accurately reproduce the plastic anisotropy of an underlying Crystal Plasticity (CP) model. The influence of anisotropy on the deformation field and corresponding texture evolution is examined in terms of the changes in texture component volume fractions and formation of texture gradients. It is found that a material with the anisotropy of a sharp cold-rolled aluminium alloy is more beneficial than that of a recrystallised hot-rolled aluminium alloy, and this influence of anisotropy suggests that Asymmetric Rolling (ASR) may be best carried out in the latest stages of cold rolling.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2018.06.001
Keywords: Non-linear plasticity, Anisotropy, Texture, Finite element methods

Diarmuid Shore 1; Paul Van Houtte 1; Dirk Roose 2; Albert Van Bael 1, 3

1 KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44 Box 2450, B-3001 Leuven, Belgium
2 KU Leuven, Department of Computer Science, Celestijnenlaan 200A, B-3001 Leuven, Belgium
3 KU Leuven, Materials Technology TC, Campus Diepenbeek, Agoralaan Gebouw B Box 8, B-3590 Diepenbeek, Belgium
@article{CRMECA_2018__346_8_724_0,
     author = {Diarmuid Shore and Paul Van Houtte and Dirk Roose and Albert Van Bael},
     title = {Multiscale modelling of asymmetric rolling with an anisotropic constitutive law},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {724--742},
     publisher = {Elsevier},
     volume = {346},
     number = {8},
     year = {2018},
     doi = {10.1016/j.crme.2018.06.001},
     language = {en},
}
TY  - JOUR
AU  - Diarmuid Shore
AU  - Paul Van Houtte
AU  - Dirk Roose
AU  - Albert Van Bael
TI  - Multiscale modelling of asymmetric rolling with an anisotropic constitutive law
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 724
EP  - 742
VL  - 346
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crme.2018.06.001
LA  - en
ID  - CRMECA_2018__346_8_724_0
ER  - 
%0 Journal Article
%A Diarmuid Shore
%A Paul Van Houtte
%A Dirk Roose
%A Albert Van Bael
%T Multiscale modelling of asymmetric rolling with an anisotropic constitutive law
%J Comptes Rendus. Mécanique
%D 2018
%P 724-742
%V 346
%N 8
%I Elsevier
%R 10.1016/j.crme.2018.06.001
%G en
%F CRMECA_2018__346_8_724_0
Diarmuid Shore; Paul Van Houtte; Dirk Roose; Albert Van Bael. Multiscale modelling of asymmetric rolling with an anisotropic constitutive law. Comptes Rendus. Mécanique, Volume 346 (2018) no. 8, pp. 724-742. doi : 10.1016/j.crme.2018.06.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.06.001/

[1] M. Goede; M. Stehlin; L. Rafflenbeul; G. Kopp; E. Beeh Super Light Car – lightweight construction thanks to a multi-material design and function integration, Eur. Transp. Res. Rev., Volume 1 (2009), pp. 5-10

[2] O. Engler; J. Hirsch Texture control by thermomechanical processing of AA6XXAl–Mg–Si sheet alloys for automotive applications – a review, Mater. Sci. Eng. A, Volume 336 (2002), pp. 249-262

[3] J. Hirsch Recent development in aluminium for automotive applications, Trans. Nonferr. Met. Soc. China, Volume 24 (2014), pp. 1995-2002

[4] G. Totten; D. MacKenzie Handbook of Aluminium, Marcel Dekker Inc., 2003

[5] S. Hirth; G. Marshall; S. Court; J. Lloyd Effects of Si on the aging behaviour and formability of aluminium alloys based on AA6016, Mater. Sci. Eng. A, Volume 319–321 (2001), pp. 452-456

[6] J. Lian; F. Barlat; B. Baudelet Plastic behaviour and stretchability of sheet metals. Part II: effect of yield surface shape on sheet forming limit, Int. J. Plast., Volume 5 (1989), pp. 131-147

[7] H. Vegter; C. ten Horn; Y. An Modeling of the plastic material behavior in advanced sheet metal forming simulations (R.K. Verma; D. Bhattachaejee, eds.), Proceedings of the International Symposium of Automotive Sheet Metal Forming, Tata McGraw Hill Publishing Company Ltd., 2008, pp. 7-18

[8] R. Whiteley Importance of directionality in drawing quality sheet steel, Trans. Amer. Soc. Met., Volume 154 (1960), pp. 154-169

[9] W. Lankford; S. Snyder; J. Bausher New criteria for predicting the press performance of deep drawing sheets, Trans. Amer. Soc. Met., Volume 42 (1950), pp. 1197-1232

[10] D. Leu; J. Wu A simplified approach to estimate limiting drawing ratio and maximum drawing load in cup drawing, J. Eng. Mater. Technol., Volume 126 (2004), pp. 116-122

[11] D. Leu Prediction of the limiting drawing ratio and the maximum drawing load in cup-drawing, Int. J. Mach. Tools Manuf., Volume 37 (1997), pp. 201-213

[12] P. Van Houtte; A. Van Bael; J. Winters The incorporation of texture-based yield loci into elasto-plastic finite element programs, Textures Microstruct., Volume 24 (1995), pp. 255-272

[13] J. Bishop; R. Hill A theoretical derivation of the plastic properties of a polycrystalline face-centred metal, Philos. Mag., Volume 42 (1951), pp. 1298-1307

[14] P. Van Houtte; S. Li; M. Seefeldt; L. Delannay Deformation texture prediction: from the Taylor model to the advanced Lamel model, Int. J. Plast., Volume 21 (2005), pp. 589-624

[15] J. Sidor; A. Miroux; R. Petrov; L. Kestens Controlling the plastic anisotropy in asymmetrically rolled aluminium sheets, Philos. Mag., Volume 88 (2008), pp. 3779-3792

[16] K. Kim; D. Lee Analysis of deformation textures of asymmetrically rolled aluminum sheets, Acta Mater., Volume 49 (2001), pp. 2583-2595

[17] S. Lee; D. Lee Analysis of deformation textures of asymmetrically rolled steel sheets, Int. J. Mech. Sci., Volume 43 (2001), pp. 1997-2015

[18] S. Kang; B. Min; H. Kim; D. Wilkinson; J. Kang Effect of asymmetric rolling on the texture and mechanical properties of AA6111-aluminum sheet, Mater. Trans., Volume 36 (2005), pp. 3141-3149

[19] B. Beausir; S. Biswas; D. Kim; L. Tóth; S. Suwas Analysis of microstructure and texture evolution in pure magnesium during symmetric and asymmetric rolling, Acta Mater., Volume 57 (2009), pp. 5061-5077

[20] J. Sidor; R. Petrov; L. Kestens Texture induced anisotropy in asymmetrically rolled aluminium alloys, Adv. Eng. Mater., Volume 13 (2011), pp. 949-954

[21] T. Sakai; K. Yoneda; S. Osugi Microstructure and texture control of Al–Mg alloy sheets by differential speed rolling, Mater. Sci. Forum, Volume 495–497 (2005), pp. 597-602

[22] H. Jin; D. Lloyd Evolution of texture in AA6111 aluminum alloy after asymmetric rolling with various velocity ratios between top and bottom rolls, Mater. Sci. Eng. A, Volume 465 (2007), pp. 267-273

[23] J. Lee; D. Lee Texture control and grain refinement of AA1050 Al alloy sheets by asymmetric rolling, Int. J. Mech. Sci., Volume 50 (2008), pp. 869-887

[24] J. Jiang; Y. Ding; F. Zuo; A. Shan Mechanical properties and microstructures of ultrafine-grained pure aluminum by asymmetric rolling, Scr. Mater., Volume 60 (2009), pp. 905-908

[25] B. Cheon; H. Kim; J. Lee Asymmetric rolling of strip-cast Al–5.5Mg–0.3Cu alloy sheet: effects on the formability and mechanical properties, Mater. Sci. Eng. A, Volume 528 (2011), pp. 5223-5227

[26] S. Tamimi; J. Correia; A. Lopes; S. Ahzi; F. Barlat; J. Gracio Asymmetric rolling of thin AA-5182 sheets: modelling and experiments, Mater. Sci. Eng. A, Volume 603 (2014), pp. 150-159

[27] J. Lee; G. Kim; S. Nam; I. Kim; D. Lee Calculation of plastic strain ratio of AA1050 Al alloy sheet processed by heavy asymmetric rolling-annealing followed by light rolling-annealing, Comput. Mater. Sci., Volume 100 (2015), pp. 45-51

[28] T. Sakai; S. Hamada; Y. Saito Improvement of the r-value in 5052 aluminum alloy sheets having through-thickness shear texture by 2-pass single-roll drive unidirectional shear rolling, Scr. Mater., Volume 44 (2001), pp. 2569-2573

[29] L. Tóth; B. Beausir; D. Orlov; R. Lapovok; A. Haldar Analysis of texture and R value variations in asymmetric rolling of IF steel, J. Mater. Process. Technol., Volume 212 (2012), pp. 509-515

[30] T. Zhang; Y. Wu; H. Gong; X. Zheng; S. Jiang Effects of rolling parameters of snake hot rolling on strain distribution of aluminum alloy 7075, Trans. Nonferr. Met. Soc. China, Volume 24 (2014), pp. 2150-2156

[31] K. Kim; D. Lee; C. Choi (1999), pp. 755-760 (in: [109])

[32] O. Engler; H. Kim; M. Huh Formation of {111} fibre texture in recrystallised aluminium sheet, J. Mater. Sci. Technol., Volume 17 (2001), pp. 75-86

[33] L. Kestens; J. Sidor; R. Petrov; T. Nguyen Minh Texture control in steel and aluminium alloys by rolling and recrystallization in non-conventional sheet manufacturing, Mater. Sci. Forum, Volume 715–716 (2012), pp. 89-95

[34] H. Kim; H. Kim; J. Cho; J. Lee High-formability Al alloy sheet produced by asymmetric rolling of strip-cast sheet, Mater. Sci. Eng. A, Volume 574 (2013), pp. 31-36

[35] Y. Hwang; G. Tzou An analytical approach to asymmetrical hot-sheet rolling considering the effects of the shear stress and internal moment at the roll gap, J. Mater. Process. Technol., Volume 52 (1995), pp. 399-424

[36] H. Gao; S. Ramalingam; G. Barber; G. Chen Analysis of asymmetrical cold rolling with varying coefficients of friction, J. Mater. Process. Technol., Volume 124 (2002), pp. 178-182

[37] M. Salimi; M. Kadkhodaei Slab analysis of asymmetrical sheet rolling, J. Mater. Process. Technol., Volume 150 (2004), pp. 215-222

[38] W. Gong; Y. Pang; C. Liu; H. Yu; B. Lu; M. Zhang Effect of asymmetric friction on front end curvature in plate and sheet rolling process, J. Iron Steel Res. Int., Volume 17 (2010), pp. 22-26

[39] M. Qwamizadeh; M. Kadkhodaei; M. Salimi Asymmetrical sheet rolling analysis and evaluation of developed curvature, Int. J. Adv. Manuf. Technol., Volume 61 (2011), pp. 227-235

[40] S. Zhang; D. Zhao; C. Gao; G. Wang Analysis of asymmetrical sheet rolling by slab method, Int. J. Mech. Sci., Volume 65 (2012), pp. 168-176

[41] A. Halloumi; C.H. Desrayaud; B. Bacroix; E. Rauch; F. Montheillet A simple analytical model of asymmetric rolling, Arch. Metall. Mater., Volume 57 (2012), pp. 425-435

[42] A. Aboutorabi; A. Assempour; H. Afrasiab Analytical approach for calculating the sheet output curvature in asymmetrical rolling: in the case of roll axis displacement as a new asymmetry factor, Int. J. Mech. Sci., Volume 105 (2016), pp. 11-22

[43] R. Shivpuri; P. Chou; C. Lau Finite element investigation of curling in non-symmetric rolling of flat stock, Int. J. Mech. Sci., Volume 30 (1988), pp. 625-635

[44] A. Richelsen Elastic–plastic analysis of the stress and strain distributions in asymmetric rolling, Int. J. Mech. Sci., Volume 39 (1997), pp. 1199-1211

[45] A. Kawałek Forming of band curvature in asymmetrical rolling process, J. Mater. Process. Technol., Volume 155–156 (2004), pp. 2033-2038

[46] S. Mousavi; S. Ebrahimi; R. Madoliat Three dimensional numerical analyses of asymmetric rolling, J. Mater. Process. Technol., Volume 187–188 (2007), pp. 725-729

[47] M. Philipp; W. Schwenzfeier; F. Fischer; R. Wodlinger; C. Fischer Front end bending in plate rolling influenced by circumferential speed mismatch and geometry, J. Mater. Process. Technol., Volume 184 (2012), pp. 224-232

[48] L. Hao; H. Di; D. Gong Analysis of sheet curvature in asymmetrical cold rolling, J. Iron Steel Res. Int., Volume 20 (2013), pp. 34-37

[49] F. Farhatnia; M. Salimi Effect of entry bending moment on exit curvature in asymmetrical rolling, Int. J. Eng. Sci. Technol., Volume 3 (2011), pp. 147-163

[50] S. Wronski; B. Ghilianu; T. Chauveau; B. Bacroix Analysis of textures heterogeneity in cold and warm asymmetrically rolled aluminium, Mater. Charact., Volume 62 (2011), pp. 22-34

[51] S. Wronski; B. Bacroix Microstructure evolution and grain refinement in asymmetrically rolled aluminium, Acta Mater., Volume 76 (2014), pp. 404-412

[52] M. Moore; P. Bate Microstructural inhomogeneity and biaxial stretching limits in aluminium alloy AA6016, J. Mater. Process. Technol., Volume 125–126 (2002), pp. 258-266

[53] P. Bate; M. Moore; S. Court Texture segregation and texture change in the biaxial stretching of AA6016, Mater. Sci. Forum, Volume 495–497 (2005), pp. 585-590

[54] J. Cho; H. Jeong; J. Szpunar (1999), pp. 1254-1259 (in: [109])

[55] J. Lenard Metal Forming Science and Practice, Elsevier, 2002

[56] P. Friedman; J. Pan Effects of plastic anisotropy and yield criteria on prediction of forming limit curves, Int. J. Mech. Sci., Volume 42 (2000), pp. 29-48

[57] S. Soare Theoretical considerations upon the MK model for limit strains prediction: the plane strain case, strain-rate effects, yield surface influence, and material heterogeneity, Eur. J. Mech. A, Solids, Volume 29 (2010), pp. 938-950

[58] P. Eggertsen; K. Mattiasson On constitutive modeling for springback analysis, Int. J. Mech. Sci., Volume 52 (2010), pp. 804-818

[59] J. Yoon; F. Barlat; R. Dick; M. Karabin Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function, Int. J. Plast., Volume 22 (2006), pp. 174-193

[60] G. Taylor; H. Quinney The plastic distortion of metals, Philos. Trans. R. Soc. Lond., A, Volume 230 (1931), pp. 323-362

[61] R. Hill A theory of the yielding and plastic flow of anisotropic metals, Proc. R. Soc. A, Volume 193 (1948), pp. 281-297

[62] J. Woodethorpe; R. Pearce The anomalous behaviour of aluminium sheet under balanced biaxial tension, Int. J. Mech. Sci., Volume 12 (1970), pp. 341-347

[63] R. Hill Theoretical plasticity of textured aggregates, Math. Proc. Camb. Philos. Soc., Volume 85 (1979), pp. 179-191

[64] D. Banabic; H. Bunge; K. Pöhlandt; A. Tekkaya Formability of Metallic Materials, Springer, 2000

[65] F. Barlat; O. Cazacu; M. Zyczkowski; D. Banabic; J.W. Yoon (2004), pp. 145-167 (in: [108])

[66] F. Chinesta; E. Cueto Advances in Material Forming – Esaform 10 years on, Springer, 2007

[67] F. Yoshida; H. Hamasaki; T. Uemori A user-friendly 3D yield function to describe anisotropy of steel sheets, Int. J. Plast., Volume 45 (2013), pp. 119-139

[68] S. Bruschi; T. Altan; D. Banabic; P. Bariani; A. Brosius; J. Cao; A. Ghiotti; M. Khraisheh; M. Merklein; A. Tekkaya Testing and modelling of material behaviour and formability in sheet metal forming, CIRP Ann. Manuf. Technol., Volume 63 (2014), pp. 727-749

[69] J. Betten Applications of tensor functions to the formulation of yield criteria for anisotropic materials, Int. J. Plast., Volume 4 (1988), pp. 29-46

[70] F. Barlat; J. Yoon; O. Cazacu On linear transformations of stress tensors for the description of plastic anisotropy, Int. J. Plast., Volume 23 (2007), pp. 876-896

[71] F. Barlat; D. Lege; J. Brem A six-component yield function for anisotropic materials, Int. J. Plast., Volume 7 (1991), pp. 693-712

[72] A. Karafillis; M. Boyce A general anisotropic yield criterion using bounds and a transformation weighting tensor, J. Mech. Phys. Solids, Volume 41 (1993), pp. 1859-1886

[73] B. Plunkett; O. Cazacu; F. Barlat Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals, Int. J. Plast., Volume 24 (2008), pp. 847-866

[74] R. Logan; W. Hosford Upper-bound anisotropic yield locus calculations assuming 〈111〉-pencil glide, Int. J. Mech. Sci., Volume 22 (1980), pp. 419-430

[75] P. Lequeu; P. Gilormini; F. Montheillet; B. Bacroix; J. Jonas Yield surfaces for textured polycrystals–I. Crystallographic approach, Acta Metall., Volume 35 (1987), pp. 439-451

[76] P. Van Houtte; K. Mols; B. Van Bael; E. Aernoudt Application of yield loci calculated from texture data, Textures Microstruct., Volume 11 (1989), pp. 23-39

[77] M. Arminjon; B. Bacroix On plastic potentials for anisotropic metals and their derivation from the texture function, Acta Mech., Volume 88 (1991), pp. 219-243

[78] B. Bacroix; P. Gilmorini Finite element simulations of earing in polycrystalline materials using a texture adjusted strain rate potential, Model. Simul. Mater. Sci. Eng., Volume 3 (1995), pp. 1-21

[79] M. Darrieulat; D. Piot A method of generating analytical yield surfaces of crystalline materials, Int. J. Plast., Volume 12 (1996), pp. 575-610

[80] P. Van Houtte; A. Van Bael Convex plastic potentials of 4th and 6th rank for anisotropic materials, Int. J. Plast., Volume 20 (2004), pp. 1505-1524

[81] P. Eyckens; H. Mulder; J. Gawad; H. Vegter; D. Roose; T. van den Boogaard; A. Van Bael; P. Van Houtte The prediction of differential hardening behaviour of steels by multi-scale crystal plasticity modelling, Int. J. Plast., Volume 73 (2015), pp. 119-141

[82] O. Cazacu; N. Chandola; B. Revil-Baudard Analytical expressions for the yield stress and Lankford coefficients of polycrystalline sheets based on a new single crystal model, Int. J. Mater. Forming (2017) | DOI

[83] P. Van Houtte; S.K. Yerra; A. Van Bael The facet method: a hierarchical multilevel modelling scheme for anisotropic convex plastic potentials, Int. J. Plast., Volume 25 (2009), pp. 332-350

[84] J. Gawad; A. Van Bael; P. Eyckens; G. Samaey; P. Van Houtte; D. Roose Hierarchical multi-scale modeling of texture induced plastic anisotropy in sheet forming, Comput. Mater. Sci., Volume 66 (2013), pp. 65-83

[85] H. Zhang; M. Diehl; F. Roters; D. Raabe A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations, Int. J. Plast., Volume 80 (2016), pp. 111-138

[86] J. Gawad; D. Banabic; A. Van Bael; D. Comsa; M. Gologanu; P. Eyckens; P. Van Houtte; D. Roose An evolving plane stress yield criterion based on crystal plasticity virtual experiments, Int. J. Plast., Volume 75 (2015), pp. 141-169

[87] K. Zhang; B. Holmedal; O. Hopperstad; S. Dumoulin; J. Gawad; A. Van Bael; P. Van Houtte Multi-level modelling of mechanical anisotropy of commercial pure aluminium plate: crystal plasticity models, advanced yield functions and parameter identification, Int. J. Plast., Volume 66 (2015), pp. 3-30

[88] W. Robert; D. Piot; J.H. Driver A rapid deformation texture model incorporating grain interactions, Scr. Mater., Volume 50 (2004), pp. 1215-1219

[89] P. Van Houtte; S. Li; O. Engler (2004), pp. 459-471 (in: [108])

[90] O. Engler; M. Crumbach; S. Li Alloy-dependent rolling texture simulation of aluminium alloys with a grain-interaction model, Acta Mater., Volume 53 (2005), pp. 2241-2257

[91] A. Molinari; G. Canova; S. Ahzi A self-consistent approach of the large deformation polycrystal viscoplasticity, Acta Metall., Volume 35 (1987), pp. 2983-2994

[92] R. Lebensohn; C. Tomé A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta Metall., Volume 41 (1993), pp. 2611-2624

[93] F. Roters; P. Eisenlohr; L. Hantcherli; D. Tjahjanto; T. Bieler; D. Raabe Overview of constitutive laws, kinematics, homogenization, and multiscale methods in crystal plasticity finite element modeling: theory, experiments, applications, Acta Mater., Volume 58 (2010), pp. 1152-1211

[94] R. Lebensohn; C. Tomé; P. Ponte Castañeda Self-consistent modelling of the mechanical behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations, Philos. Mag., Volume 87 (2007), pp. 4287-4322

[95] F. Roters; P. Eisenlohr; C. Kords; D. Tjahjanto; M. Diehl; D. Raabe DAMASK: the Düsseldork Advanced Material Simulation Kit for studying crystal plasticity using an FE based or spectral numerical solver, Proc. IUTAM, Volume 3 (2012), pp. 3-10

[96] P. Van Houtte Application of plastic potentials to strain rate sensitive and insensitive anisotropic materials, Int. J. Plast., Volume 10 (1994), pp. 719-748

[97] C. Lawson; R. Hanson Solving Least Squares Problems, SIAM, 1995

[98] E. Saff; A. Kuijlaars Distributing many points on a sphere, Math. Intell., Volume 19 (1997), pp. 5-11

[99] J. Sidor; R. Petrov; L. Kestens Microstructural and texture changes in severely deformed aluminum alloys, Mater. Charact., Volume 62 (2011), pp. 228-236

[100] M. Crumbach; M. Goerdeler; G. Gottstein Modelling of recrystallisation textures in aluminium alloys: II. Model performance and experimental validation, Acta Mater., Volume 54 (2006), pp. 3291-3306

[101] J.J. Sidor; K. Decroos; R.H. Petrov; L.A.I. Kestens Evolution of recrystallization textures in particle containing Al alloys after various rolling reductions: experimental study and modeling, Int. J. Plast., Volume 66 (2015), pp. 119-137

[102] I.L. Dillamore; W.T. Roberts Rolling textures in fcc and bcc metals, Acta Metall., Volume 12 (1964), pp. 281-293

[103] L.A.I. Kestens; H. Pirgazi Texture formation in metal alloys with cubic crystal structures, Mater. Sci. Technol., Volume 32 (2016), pp. 1303-1315

[104] T. Kuwabara; A. Van Bael; E. Iizuka Measurement and analysis of yield locus and work hardening characteristics of steel sheets with different r-values, Acta Mater., Volume 50 (2002), pp. 3717-3729

[105] Simulia Ltd., Abaqus Theory Guide 6.13. Dassault Systèmes, 2013.

[106] D. Shore; L. Kestens; J. Sidor; P. Van Houtte; A. Van Bael Process parameter influence on texture heterogeneity in asymmetric rolling of aluminium sheet alloys, Int. J. Mater. Forming, Volume 11 (2016), pp. 297-309 | DOI

[107] J. Hirsch; T. Al-Samman Superior light metals by texture engineering: optimized aluminum and magnesium alloys for automotive applications, Acta Mater., Volume 61 (2013), pp. 818-843

[108] Continuum Scale Simulation of Engineering Materials (D. Raabe; L.D. Chen; F. Barlat; F. Roters, eds.), Wiley, 2004

[109] ICOTOM 12 (1999)

Cited by Sources:

Comments - Policy