Comptes Rendus
Computational methods in welding and additive manufacturing/Simulation numérique des procédés de soudage et de fabrication additive
Application of multi-phase viscoplastic material modelling to computational welding mechanics of grade-s960ql steel
Comptes Rendus. Mécanique, Volume 346 (2018) no. 11, pp. 1018-1032.

The sound numerical prediction of welding-induced thermal stresses, residual stresses, and distortions strongly depends on the accurate description of a welded material's thermomechanical deformation behaviour. In this work, we provide experimental data on the viscoplastic deformation behaviour of a grade-s960ql steel up to a temperature of 1000C. In addition, a multi-phase viscoplastic material model is proposed, which accounts for the experimentally observed isothermal deformation behaviour of grade-s960ql steel base and austenitised material, as well as for athermal contributions that originate from solid-state phase transformations. The multi-phase viscoplastic and a classic rate-independent isotropic hardening material model were applied in the numerical simulations of both-ends-fixed bar Satoh tests and a single-pass gas metal arc weld. The influence of material modelling choices on the agreement between numerical simulation and experimental results is discussed, and recommendations for further work are given.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2018.08.001
Keywords: Computational welding mechanics, s960ql, Cyclic hardening, Viscoplasticity, Complex low-cycle fatigue test, Satoh test

Nicolas Häberle 1; Andreas Pittner 1; Rainer Falkenberg 1; Ole Kahlcke 1; Michael Rethmeier 1

1 Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
@article{CRMECA_2018__346_11_1018_0,
     author = {Nicolas H\"aberle and Andreas Pittner and Rainer Falkenberg and Ole Kahlcke and Michael Rethmeier},
     title = {Application of multi-phase viscoplastic material modelling to computational welding mechanics of grade-s960ql steel},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {1018--1032},
     publisher = {Elsevier},
     volume = {346},
     number = {11},
     year = {2018},
     doi = {10.1016/j.crme.2018.08.001},
     language = {en},
}
TY  - JOUR
AU  - Nicolas Häberle
AU  - Andreas Pittner
AU  - Rainer Falkenberg
AU  - Ole Kahlcke
AU  - Michael Rethmeier
TI  - Application of multi-phase viscoplastic material modelling to computational welding mechanics of grade-s960ql steel
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 1018
EP  - 1032
VL  - 346
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crme.2018.08.001
LA  - en
ID  - CRMECA_2018__346_11_1018_0
ER  - 
%0 Journal Article
%A Nicolas Häberle
%A Andreas Pittner
%A Rainer Falkenberg
%A Ole Kahlcke
%A Michael Rethmeier
%T Application of multi-phase viscoplastic material modelling to computational welding mechanics of grade-s960ql steel
%J Comptes Rendus. Mécanique
%D 2018
%P 1018-1032
%V 346
%N 11
%I Elsevier
%R 10.1016/j.crme.2018.08.001
%G en
%F CRMECA_2018__346_11_1018_0
Nicolas Häberle; Andreas Pittner; Rainer Falkenberg; Ole Kahlcke; Michael Rethmeier. Application of multi-phase viscoplastic material modelling to computational welding mechanics of grade-s960ql steel. Comptes Rendus. Mécanique, Volume 346 (2018) no. 11, pp. 1018-1032. doi : 10.1016/j.crme.2018.08.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.08.001/

[1] L.-E. Lindgren Finite element modeling and simulation of welding, part 1: increased complexity, J. Therm. Stresses, Volume 24 (2001) no. 2, pp. 141-192

[2] D. Radaj Heat Effects of Welding – Temperature Field, Residual Stress, Distortion, Springer-Verlag, 1992

[3] L.-E. Lindgren Finite element modeling and simulation of welding. Part 2: improved material modeling, J. Therm. Stresses, Volume 24 (2001) no. 3, pp. 195-231

[4] K. Satoh Transient thermal stresses of weld heat-affected zone by both-ends-fixed bar analogy, Trans. Jpn. Weld. Soc., Volume 3 (1972) no. 1, pp. 125-134

[5] F. Fischer; Q.-P. Sun; K. Tanaka Transformation-induced plasticity (TRIP), Appl. Mech. Rev., Volume 49 (1996) no. 6, pp. 317-364

[6] Y. Vincent; J.-F. Jullien; P. Gilles Thermo-mechanical consequences of phase transformations in the heat-affected zone using a cyclic uniaxial test, Int. J. Solids Struct., Volume 42 (2005) no. 14, pp. 4077-4098

[7] Y. Vincent; J.-M. Bergheau; J.-B. Leblond Viscoplastic behaviour of steels during phase transformations, C. R. Mecanique, Volume 331 (2003) no. 9, pp. 587-594

[8] Y. Li; H. Lu; C. Yu; Y. Wu Accurate prediction of welding stress evolution by considering improved phase transformation model, Mater. Trans., Volume 56 (2015) no. 5, pp. 715-719

[9] J.-M. Bergheau; Y. Vincent; J.-B. Leblond; J.-F. Jullien Viscoplastic behaviour of steels during welding, Sci. Technol. Weld. Join., Volume 9 (2004) no. 4, pp. 323-330

[10] Z. Moumni; F. Roger; N.T. Trinh Theoretical and numerical modeling of the thermomechanical and metallurgical behavior of steel, Int. J. Plast., Volume 27 (2011) no. 3, pp. 414-439

[11] T. Schenk; I. Richardson; G. Eßer; M. Kraska (Materials Science Forum), Volume vol. 638, Trans. Tech. Publ. (2010), pp. 3710-3715

[12] A.S. Oddy; J.A. Goldak; J.M.J. McDill Transformation effects in the 3D finite element enalysis of welds, Proceedings of the Second International Conference on Trends in Welding Research, 1989, pp. 15-19

[13] DIN EN 10025-6, Hot rolled products of structural steels – part 6: technical delivery conditions for flat products of high yield strength structural steels in the quenched and tempered conditions, DIN Deutsches Institut für Normung e. V., Berlin, Germany, 2013.

[14] L. Fu; C. Deng; H. Ren; Y. Zhong; H. Zhou (Advanced Materials Research), Volume vol. 834, Trans. Tech. Publications, Switzerland (2014), pp. 407-415

[15] J.-L. Chaboche A review of some plasticity and viscoplasticity constitutive theories, Int. J. Plast., Volume 24 (2008) no. 10, pp. 1642-1693

[16] C. Sommitsch; R. Sievert; T. Wlanis; B. Günther; V. Wieser Modelling of creep-fatigue in containers during aluminium and copper extrusion, Comput. Mater. Sci., Volume 39 (2007) no. 1, pp. 55-64

[17] J. Schicker; R. Sievert; B. Fedelich; H. Klingelhöffer; B. Skrotzki Failure estimation of thermo-mechanically loaded hot parts in turbochargers, MTZ Worldw., Volume 71 (2010) no. 6, pp. 48-53

[18] U. Müller; K. Höschler; M. Gerendas; H.-J. Bauer; U. Schoth Mechanical analysis of an aero-engine combustor under operation conditions using a unified constitutive material model for deformation simulation, Proceedings of the International Conference on Temperature-Fatigue Interaction, Elsevier, 2001, pp. 351-360

[19] P.J. Armstrong; C.O. Frederick A Mathematical Representation of the Multiaxial Bauschinger Effect, Central Electricity Generating Board [and] Berkeley Nuclear Laboratories, Research & Development Department, Berkeley, CA, USA, 1966

[20] J.-L. Chaboche; K. Van Dang; G. Cordier Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel, Structural Mechanics In Reactor Technology Transactions, 1979

[21] J.-L. Chaboche; A. Gaubert; P. Kanouté; A. Longuet; F. Azzouz; M. Mazière Viscoplastic constitutive equations of combustion chamber materials including cyclic hardening and dynamic strain aging, Int. J. Plast., Volume 46 (2013), pp. 1-22

[22] M. Coret; A. Combescure A mesomodel for the numerical simulation of the multiphasic behavior of materials under anisothermal loading (application to two low-carbon steels), Int. J. Mech. Sci., Volume 44 (2002) no. 9, pp. 1947-1963

[23] J.-B. Leblond; J. Devaux A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size, Acta Metall., Volume 32 (1984) no. 1, pp. 137-146

[24] D. Koistinen; R. Marburger A general equation prescribing the extent of the austenite–martensite transformation in pure iron–carbon alloys and plain carbon steels, Acta Metall., Volume 7 (1959) no. 1, pp. 59-60

[25] J.-B. Leblond; J. Devaux; J.-C. Devaux Mathematical modelling of transformation plasticity in steels I: case of ideal-plastic phases, Int. J. Plast., Volume 5 (1989) no. 6, pp. 551-572

[26] J.-B. Leblond Mathematical modelling of transformation plasticity in steels II: coupling with strain hardening phenomena, Int. J. Plast., Volume 5 (1989) no. 6, pp. 573-591

[27] M. Coret Étude expérimentale et simulation de la plasticité de transformation et du comportement multiphase de l'acier de cuve 16MND5 sous chargement multiaxial anisotherme, École normale supérieure, Cachan, France, 2001 (Ph.D. thesis)

[28] Z.-L. Zhan; J. Tong A study of cyclic plasticity and viscoplasticity in a new nickel-based superalloy using unified constitutive equations. Part I: evaluation and determination of material parameters, Mech. Mater., Volume 39 (2007) no. 1, pp. 64-72

[29] X. Qiang; X. Jiang; F.S.K. Bijlaard; H. Kolstein Mechanical properties and design recommendations of very high strength steel S960 in fire, Eng. Struct., Volume 112 (2016), pp. 60-70

[30] S. Neubert; A. Pittner; M. Rethmeier Numerical sensitivity analysis of TRIP-parameter K on welding residual stresses for high-strength low-alloyed steels, J. Therm. Stresses, Volume 39 (2016) no. 2, pp. 201-219

[31] S. Neubert; A. Pittner; M. Rethmeier Experimental determination of TRIP-parameter K for mild-and high-strength low-alloy steels and a super martensitic filler material, SpringerPlus, Volume 5 (2016) no. 1, p. 754

[32] T. Slezak; J. Zmywaczyk; P. Koniorczyk; L. Sniezek DSC investigations of the phase transition in the high strength steel S960QL, Adv. Mater. Res., Volume 1126 (2015), pp. 148-154

[33] T. Seifert Ein komplexes LCF-Versuchsprogramm zur schnellen und günstigen Werkstoffparameteridentifizierung, Proceedings of Werkstoffprüfung, 2006, pp. 409-414

[34] J. Goldak; A. Chakravarti; M. Bibby A new finite element model for welding heat sources, Metall. Trans. B, Volume 15 (1984) no. 2, pp. 299-305

Cited by Sources:

Comments - Policy