Comptes Rendus
Computational methods in welding and additive manufacturing/Simulation numérique des procédés de soudage et de fabrication additive
Approaches in computational welding mechanics applied to additive manufacturing: Review and outlook
Comptes Rendus. Mécanique, Volume 346 (2018) no. 11, pp. 1033-1042.

The development of computational welding mechanics (CWM) began more than four decades ago. The approach focuses on the region outside the molten pool and is used to simulate the thermo-metallurgical-mechanical behaviour of welded components. It was applied to additive manufacturing (AM) processes when they were known as weld repair and metal deposition. The interest in the CWM approach applied to AM has increased considerably, and there are new challenges in this context regarding welding. The current state and need for developments from the perspective of the authors are summarised in this study.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2018.08.004
Mots clés : Simulations, Welding, Additive manufacturing, Microstructure, Thermo-mechanics
Lars-Erik Lindgren 1 ; Andreas Lundbäck 1

1 Department of Engineering Sciences and Mathematics, Luleå University of Technology, 971 87 Luleå, Sweden
@article{CRMECA_2018__346_11_1033_0,
     author = {Lars-Erik Lindgren and Andreas Lundb\"ack},
     title = {Approaches in computational welding mechanics applied to additive manufacturing: {Review} and outlook},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {1033--1042},
     publisher = {Elsevier},
     volume = {346},
     number = {11},
     year = {2018},
     doi = {10.1016/j.crme.2018.08.004},
     language = {en},
}
TY  - JOUR
AU  - Lars-Erik Lindgren
AU  - Andreas Lundbäck
TI  - Approaches in computational welding mechanics applied to additive manufacturing: Review and outlook
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 1033
EP  - 1042
VL  - 346
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crme.2018.08.004
LA  - en
ID  - CRMECA_2018__346_11_1033_0
ER  - 
%0 Journal Article
%A Lars-Erik Lindgren
%A Andreas Lundbäck
%T Approaches in computational welding mechanics applied to additive manufacturing: Review and outlook
%J Comptes Rendus. Mécanique
%D 2018
%P 1033-1042
%V 346
%N 11
%I Elsevier
%R 10.1016/j.crme.2018.08.004
%G en
%F CRMECA_2018__346_11_1033_0
Lars-Erik Lindgren; Andreas Lundbäck. Approaches in computational welding mechanics applied to additive manufacturing: Review and outlook. Comptes Rendus. Mécanique, Volume 346 (2018) no. 11, pp. 1033-1042. doi : 10.1016/j.crme.2018.08.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.08.004/

[1] L.-E. Lindgren; A. Lundbäck; M. Fisk; R. Pederson; J. Andersson Simulation of additive manufacturing using coupled constitutive and microstructure models, Addit. Manuf., Volume 12 (2016), pp. 144-158

[2] L.-E. Lindgren Computational Welding Mechanics – Thermomechanical and Microstructural Simulations, Woodhead Publishing, 2007

[3] L.E. Lindgren Numerical modelling of welding, Comput. Methods Appl. Mech. Eng., Volume 195 (2006), pp. 6710-6736

[4] L.-E. Lindgren; A. Lundbäck; M. Fisk Thermo-mechanics and microstructure evolution in manufacturing simulations, J. Therm. Stresses, Volume 36 (2013), pp. 564-588

[5] A.V. Gusarov; I. Smurov Modeling the interaction of laser radiation with powder bed at selective laser melting, Phys. Proc., Volume 5B (2010), pp. 381-394

[6] Y.S. Lee; W. Zhang Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion, Addit. Manuf., Volume 12 (2016), pp. 178-188 (part B)

[7] A. Foroozmehr; M. Badrossamay; E. Foroozmehr; S.i. Golabi Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed, Mater. Des., Volume 89 (2016), pp. 255-263

[8] L.-E. Lindgren Finite element modelling and simulation of welding, part 1 increased complexity, J. Therm. Stresses, Volume 24 (2001), pp. 141-192

[9] P. Michaleris; Z. Feng; G. Campbell Evaluation of 2D and 3D FEA models for predicting residual stress and distortion, Approximate Methods in the Design and Analysis of Pressure Vessels and Piping Components, Pressure Vessels and Piping Division (Publication) PVP, vol. 347, American Society of Mechanical Engineers, 1997, pp. 91-102

[10] E.F. Rybicki; R.B. Stonesifer Computation of residual stresses due to multipass welds in piping systems, J. Press. Vessel Technol., Volume 101 (1979), pp. 149-154

[11] Y. Ueda; K. Fukuda; K. Nakacho; S. Endo A new measuring method of residual stresses with the aid of finite element method and reliability of estimated values, J. Soc. Nav. Archit. Jpn., Volume 1975 (1975), pp. 499-507 (in Japanese)

[12] D. Deng; H. Murakawa; W. Liang Numerical simulation of welding distortion in large structures, Comput. Methods Appl. Mech. Eng., Volume 196 (2007), pp. 4613-4627

[13] N. Keller; V. Ploshikhin New method for fast predictions of residual stress and distortion of AM parts, University of Texas, Austin, USA (2014)

[14] P. Michaleris; L. Zhang; S.R. Bhide; P. Marugabandhu Evaluation of 2D, 3D and applied plastic strain methods for predicting buckling welding distortion and residual stress, Sci. Technol. Weld. Join., Volume 11 (2006), pp. 707-716

[15] P. Michaleris; A. DeBiccari Prediction of welding distortion, Weld. J., Volume 76 (1997), p. 172s-181s

[16] L. Papadakis; A. Loizou; J. Risse; S. Bremen; J. Schrage A computational reduction model for appraising structural effects in selective laser melting manufacturing, Virtual Phys. Prototyping, Volume 9 (2014), pp. 17-25

[17] A. Malmelöv Modeling of Additive Manufacturing with Reduced Computational Effort, Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, 2016

[18] J. Shanghvi; P. Michaleris Thermo-elasto-plastic finite element analysis of quasi-state processes in Eulerian reference frames, Int. J. Numer. Methods Eng., Volume 53 (2002), pp. 1533-1556

[19] J. Ding; P. Colegrove; J. Mehnen; S. Williams; F. Wang; P.S. Almeida A computationally efficient finite element model of wire and arc additive manufacture, Int. J. Adv. Manuf. Technol., Volume 70 (2014), pp. 227-236

[20] J. Ding; P. Colegrove; J. Mehnen; S. Ganguly; P.M. Sequeira Almeida; F. Wang; S. Williams Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts, Comput. Mater. Sci., Volume 50 (2011), pp. 3315-3322

[21] P. Colegrove; C. Ikeagu; A. Thistlethwaite; S. Williams; T. Nagy; W. Suder; A. Steuwer; T. Pirling Welding process impact on residual stress and distortion, Sci. Technol. Weld. Join., Volume 14 (2009), pp. 717-725

[22] F. Montevecchi; G. Venturini; N. Grossi; A. Scippa; G. Campatelli Finite element mesh coarsening for effective distortion prediction in wire arc additive manufacturing, Addit. Manuf., Volume 18 (2017), pp. 145-155

[23] E.R. Denlinger; J. Irwin; P. Michaleris Thermomechanical modeling of additive manufacturing large parts, J. Manuf. Sci. Eng., Volume 136 (2014)

[24] A. Lundbäck; L.-E. Lindgren Modelling of metal deposition, Finite Elem. Anal. Des., Volume 47 (2011), pp. 1169-1177

[25] M. Chiumenti; M. Cervera; A. Salmi; C. Agelet de Saracibar; N. Dialami; K. Matsui Finite element modeling of multi-pass welding and shaped metal deposition processes, Comput. Methods Appl. Mech. Eng., Volume 199 (2010), pp. 2343-2359

[26] L. Van Belle; G. Vansteenkiste; J.C. Boyer Comparisons of numerical modelling of the selective laser melting, Key Eng. Mater., Volume 504–506 (2012), pp. 1067-1072

[27] M.F. Zaeh; G. Branner Investigations on residual stresses and deformations in selective laser melting, Prod. Eng., Volume 4 (2010), pp. 35-45

[28] D. Ding; Z. Pan; D. Cuiuri; H. Li Wire-feed additive manufacturing of metal components: technologies, developments and future interests, Int. J. Adv. Manuf. Technol., Volume 81 (2015), pp. 465-481

[29] F. Montevecchi; G. Venturini; A. Scippa; G. Campatelli Finite element modelling of wire-arc-additive-manufacturing process, Proc. CIRP, Volume 55 (2016), pp. 109-114

[30] J. Goldak; A. Chakravarti; M. Bibby A new finite element model for welding heat sources, Metall. Trans. B, Volume 15B (1984), pp. 299-305

[31] N.E. Hodge; R.M. Ferencz; R.M. Vignes Experimental comparison of residual stresses for a thermomechanical model for the simulation of selective laser melting, Addit. Manuf., Volume 12 (2016), pp. 159-168 (part B)

[32] J.C. Heigel; P. Michaleris; E.W. Reutzel Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti-6Al-4V, Addit. Manuf., Volume 5 (2015), pp. 9-19

[33] E.R. Denlinger; J.C. Heigel; P. Michaleris Residual stress and distortion modeling of electron beam direct manufacturing Ti-6Al-4V, Proc. Inst. Mech. Eng., B J. Eng. Manuf., Volume 229 (2015), pp. 1803-1813

[34] A.J. Dunbar; E.R. Denlinger; M.F. Gouge; P. Michaleris Experimental validation of finite element modeling for laser powder bed fusion deformation, Addit. Manuf., Volume 12 (2016), pp. 108-120

[35] A.J. Dunbar; E.R. Denlinger; M.F. Gouge; T.W. Simpson; P. Michaleris Comparisons of laser powder bed fusion additive manufacturing builds through experimental in situ distortion and temperature measurements, Addit. Manuf., Volume 15 (2017), pp. 57-65

[36] E.R. Denlinger; M. Gouge; J. Irwin; P. Michaleris Thermomechanical model development and in situ experimental validation of the laser powder-bed fusion process, Addit. Manuf., Volume 16 (2017), pp. 73-80

[37] Q. Yang; P. Zhang; L. Cheng; Z. Min; M. Chyu; A.C. To Finite element modeling and validation of thermomechanical behavior of Ti-6Al-4V in directed energy deposition additive manufacturing, Addit. Manuf., Volume 12 (2016), pp. 169-177

[38] G. Vastola; G. Zhang; Q.X. Pei; Y.W. Zhang Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling, Addit. Manuf., Volume 12 (2016), pp. 231-239 (part B)

[39] B. Cheng; S. Shrestha; K. Chou Stress and deformation evaluations of scanning strategy effect in selective laser melting, Addit. Manuf., Volume 12 (2016), pp. 240-251 (part B)

[40] S. Marimuthu; D. Clark; J. Allen; A.M. Kamara; P. Mativenga; L. Li; R. Scudamore Finite element modelling of substrate thermal distortion in direct laser additive manufacture of an aero-engine component, Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci., Volume 227 (2012), pp. 1987-1999

[41] P. Prabhakar; W.J. Sames; R. Dehoff; S.S. Babu Computational modeling of residual stress formation during the electron beam melting process for Inconel 718, Addit. Manuf., Volume 7 (2015), pp. 83-91

[42] M. Chiumenti; M. Cervera; N. Dialami; B. Wu; L. Jinwei; C. Agelet de Saracibar Numerical modeling of the electron beam welding and its experimental validation, Finite Elem. Anal. Des., Volume 121 (2016), pp. 118-133

[43] M. Chiumenti; E. Neiva; E. Salsi; M. Cervera; S. Badia; J. Moya; Z. Chen; C. Lee; C. Davies Numerical modelling and experimental validation in selective laser melting, Addit. Manuf., Volume 18 (2017), pp. 171-185

[44] C. Li; J.F. Liu; X.Y. Fang; Y.B. Guo Efficient predictive model of part distortion and residual stress in selective laser melting, Addit. Manuf., Volume 17 (2017), pp. 157-168

[45] C. Li; C.H. Fu; Y.B. Guo; F.Z. Fang A multiscale modeling approach for fast prediction of part distortion in selective laser melting, J. Mater. Process. Technol., Volume 229 (2016), pp. 703-712

[46] S. Kou A simple index for predicting the susceptibility to solidification cracking, Weld. J., Volume 94 (2015), p. 374s-388s

[47] J. Lippold Welding Metallurgy and Weldability, John Wiley & Sons, Hoboken, New Jersey, 2015

[48] C.E. Cross; N. Coniglio Weld solidification cracking: critical conditions for crack initiation and growth (T. Böllinghaus; H. Herold; C.E. Cross; J.C. Lippold, eds.), Hot Cracking Phenomena in Welds II, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 47-66

[49] T. Mukherjee; J.S. Zuback; A. De; T. DebRoy Printability of alloys for additive manufacturing, Sci. Rep., Volume 6 (2016)

[50] T. Mukherjee; V. Manvatkar; A. De; T. DebRoy Dimensionless numbers in additive manufacturing, J. Appl. Phys., Volume 121 (2017)

[51] D. Rosenthal Mathematical theory of heat distribution during welding and cutting, Weld. J., Volume 20 (1941), p. 220s-234s

[52] D. Rosenthal The theory of moving sources of heat and its application to metal treatments, Trans. Amer. Soc. Mech. Eng., Volume 68 (1946), pp. 849-866

[53] W.E. King; H.D. Barth; V.M. Castillo; G.F. Gallegos; J.W. Gibbs; D.E. Hahn; C. Kamath; A.M. Rubenchik Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing, J. Mater. Process. Technol., Volume 214 (2014), pp. 2915-2925

[54] M. Tang; P.C. Pistorius; J.L. Beuth Prediction of lack-of-fusion porosity for powder bed fusion, Addit. Manuf., Volume 14 (2017), pp. 39-48

[55] S.G.K. Manikandan; D. Sivakumar; K.P. Rao; M. Kamaraj Effect of weld cooling rate on Laves phase formation in Inconel 718 fusion zone, J. Mater. Process. Technol., Volume 214 (2014), pp. 358-364

[56] C.H. Radhakrishna; K. Prasad Rao The formation and control of Laves phase in superalloy 718 welds, J. Mater. Sci., Volume 32 (1997), pp. 1977-1984

[57] R.G. Thompson; D.E. Mayo; B. Radhakrishnan The relationship between carbon content, microstructure, and intergranular liquation cracking in cast nickel Alloy 718, Metall. Trans. A, Volume 22 (1991), pp. 557-567

[58] N. Coniglio; C.E. Cross Initiation and growth mechanisms for weld solidification cracking, Int. Mater. Rev., Volume 58 (2013), pp. 375-397

[59] M. Jonsson; L. Karlsson; L.-E. Lindgren Thermal stresses, plate motion and hot cracking in butt-welding, Stockholm, Sweden (1983), pp. 273-279

[60] Y. Wei; Z. Dong; R. Liu; Z. Dong; Y. Pan Simulating and predicting weld solidification cracks (T. Böllinghaus; H. Herold, eds.), Hot Cracking Phenomena in Welds, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 185-222

[61] Y.H. Wei; Z.B. Dong; R.P. Liu; Z.J. Dong Three-dimensional numerical simulation of weld solidification cracking, Model. Simul. Mater. Sci. Eng., Volume 13 (2005), pp. 437-454

[62] Y. Wei; Z. Dong; R. Liu; Z. Dong Modeling the Trans-Varestraint test with finite element method, Comput. Mater. Sci., Volume 35 (2006), pp. 84-91

[63] H. Bergmann; R. Hilbinger Numerical simulation of centre line hot cracks in laser beam welding of aluminium close to the sheet edge (H. Cerjak, ed.), Mathematical Modelling of Weld Phenomena 4, The Institute of Materials, Graz, Austria, 1998, pp. 658-668

[64] M. Rappaz; J.M. Drezet; M. Gremaud A new hot-tearing criterion, Metall. Mater. Trans. A, Volume 30 (1999), pp. 449-455

[65] J.M. Drezet; D. Allehaux Application of the Rappaz–Drezet–Gremaud hot tearing criterion to welding of aluminium alloys (T. Böllinghaus; H. Herold; C.E. Cross; J.C. Lippold, eds.), Hot Cracking Phenomena in Welds II, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 27-45

[66] N. Coniglio; C.E. Cross Mechanisms for solidification crack initiation and growth in aluminum welding, Metall. Mater. Trans. A, Volume 40 (2009), pp. 2718-2728

[67] J. Draxler, J. Edberg, L.-E. Lindgren, J. Andersson, Simulation of hot cracking in superalloys. Part III. Application on Varestraint tests of Alloy 718, submitted for publication.

[68] J. Draxler, J. Edberg, L.-E. Lindgren, J. Andersson, Simulation of hot cracking in superalloys. Part II. Model for pressure in grain boundary liquid film, submitted for publication.

[69] J. Draxler, J. Edberg, L.-E. Lindgren, J. Andersson, Simulation of hot cracking in superalloys. Part I. Pore based crack criterion, submitted for publication.

[70] D. Clark; M.R. Bache; M.T. Whittaker Shaped metal deposition of a nickel alloy for aero engine applications, J. Mater. Process. Technol., Volume 203 (2008), pp. 439-448

[71] J.K. Hong; J.H. Park; N.K. Park; I.S. Eom; M.B. Kim; C.Y. Kang Microstructures and mechanical properties of Inconel 718 welds by CO2 laser welding, J. Mater. Process. Technol., Volume 201 (2008), pp. 515-520

[72] X. Wang; X. Gong; K. Chou Review on powder-bed laser additive manufacturing of Inconel 718 parts, Proc. Inst. Mech. Eng., B J. Eng. Manuf., Volume 231 (2016), pp. 1890-1903

[73] M. Fisk Validation of induction heating model for Alloy 718 components, Int. J. Comput. Methods Eng. Sci. Mech., Volume 12 (2011), pp. 161-167

[74] M. Fisk; A. Lundbäck Simulation and validation of repair welding and heat treatment of an Alloy 718 plate, Finite Elem. Anal. Des., Volume 58 (2012), pp. 66-73

[75] M. Fisk; J.C. Ion; L.E. Lindgren Flow stress model for IN718 accounting for evolution of strengthening precipitates during thermal treatment, Comput. Mater. Sci., Volume 82 (2014), pp. 531-539

[76] M. Fisk; A. Lundbäck; J. Edberg; J.M. Zhou Simulation of microstructural evolution during repair welding of an IN718 plate, Finite Elem. Anal. Des., Volume 120 (2016), pp. 92-101

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Application of multi-phase viscoplastic material modelling to computational welding mechanics of grade-s960ql steel

Nicolas Häberle; Andreas Pittner; Rainer Falkenberg; ...

C. R. Méca (2018)


Multiscale modeling of ductile failure in metallic alloys

Thomas Pardoen; Florence Scheyvaerts; Aude Simar; ...

C. R. Phys (2010)


On the selective silica application to improve welding performance of the tungsten arc process for a plain carbon steel and for aluminium

Stéphane Sire; Surendar Marya

C. R. Méca (2002)