Comptes Rendus
Acousto-mechanical behaviour of ex-vivo skin: Nonlinear and viscoelastic properties
Comptes Rendus. Mécanique, Volume 347 (2019) no. 3, pp. 218-227.

The mechanical behaviour of skin is significant for some applications including dermatology, surgery, and impact biomechanics science. In this work, we have investigated the study of the acousto-mechanical viscoelastic properties of skin. For that, both tensile-relaxation and ultrasonic tests were conducted on porcine tissue samples in fibre directions. To understand the complex skin aging phenomena, we used strength tensile test correlated with the Nonlinear Time Reversal signal processing tool extension “TR-NEWS”. Uniaxial tensile tests were carried out at a strain rate of 5103 mms1 on skin using a load-relaxation-discharge load path with increasing amplitude and offset. This work is also under way to extend the frequency range of ultrasounds to 50 MHz. Digital Image Correlation was used for 2D strain measurement of the dermis. From this analysis, we conclude that fresh porcine skin should be modelled as a nonlinear viscoelastic material with strain-rate dependence. The obtained hysteresis loop shall be taken as significant skin damage.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2018.12.005
Keywords: Skin, Strength tensile test, TR-NEWS measurements, Hysteresis, Nonlinearity, Viscoelasticity

Halima Ghorbel-Feki 1, 2, 3; Ali Masood 1, 2, 3; Michael Caliez 1, 2; Michael Gratton 1, 2; Jean Christophe Pittet 3; Martin Lints 1, 2; Serge Dos Santos 1, 2

1 INSA Centre Val de Loire, 3, rue de la Chocolaterie, CS 23410, 41034 Blois cedex, France
2 UMR 1253, Imaging and Brain: iBrain, Université de Tours, INSERM, Tours, France
3 Orion Concept, 113, rue des Bordiers, 37100 Tours, France
@article{CRMECA_2019__347_3_218_0,
     author = {Halima Ghorbel-Feki and Ali Masood and Michael Caliez and Michael Gratton and Jean Christophe Pittet and Martin Lints and Serge Dos Santos},
     title = {Acousto-mechanical behaviour of ex-vivo skin: {Nonlinear} and viscoelastic properties},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {218--227},
     publisher = {Elsevier},
     volume = {347},
     number = {3},
     year = {2019},
     doi = {10.1016/j.crme.2018.12.005},
     language = {en},
}
TY  - JOUR
AU  - Halima Ghorbel-Feki
AU  - Ali Masood
AU  - Michael Caliez
AU  - Michael Gratton
AU  - Jean Christophe Pittet
AU  - Martin Lints
AU  - Serge Dos Santos
TI  - Acousto-mechanical behaviour of ex-vivo skin: Nonlinear and viscoelastic properties
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 218
EP  - 227
VL  - 347
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2018.12.005
LA  - en
ID  - CRMECA_2019__347_3_218_0
ER  - 
%0 Journal Article
%A Halima Ghorbel-Feki
%A Ali Masood
%A Michael Caliez
%A Michael Gratton
%A Jean Christophe Pittet
%A Martin Lints
%A Serge Dos Santos
%T Acousto-mechanical behaviour of ex-vivo skin: Nonlinear and viscoelastic properties
%J Comptes Rendus. Mécanique
%D 2019
%P 218-227
%V 347
%N 3
%I Elsevier
%R 10.1016/j.crme.2018.12.005
%G en
%F CRMECA_2019__347_3_218_0
Halima Ghorbel-Feki; Ali Masood; Michael Caliez; Michael Gratton; Jean Christophe Pittet; Martin Lints; Serge Dos Santos. Acousto-mechanical behaviour of ex-vivo skin: Nonlinear and viscoelastic properties. Comptes Rendus. Mécanique, Volume 347 (2019) no. 3, pp. 218-227. doi : 10.1016/j.crme.2018.12.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.12.005/

[1] J.M. Pereira; J.M. Mansour; B.R. Davis Dynamic measurement of the viscoelastic properties of skin, J. Biomech., Volume 24 (1991), pp. 157-162

[2] G. Wilkes; I. Brown; R. Wildnauer The biomechanical properties of skin, C.R.C. Crit. Rev. Bioeng., Volume 1 (1973) no. 4, pp. 453-495

[3] F. Kathyr; C. Imberdis; P. Vescovo; D. Varchon; J.M. Lagarde Model of the viscoelastic behaviour of skin in vivo and study of anisotropy, Skin Res. Technol., Volume 10 (2004), pp. 93-103

[4] H. Zahouani; G. Boyer; C. Pailler-Mattei; M. Ben Tkaya; R. Vargiolu Effect of human ageing on skin rheology and tribology, Wear, Volume 271 (2011), pp. 2364-2369

[5] Y.C. Fung Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York, 1993

[6] K. Langer On the anatomy and physiology of the skin. The Imperial Academy of Science, Vienna, Br. J. Plast. Surg., Volume 17 (1861) no. 31, pp. 93-106 Reprinted in (1978)

[7] M. Ridge; V. Wright The directional effects of skin. A bioengineering study of skin with particular reference to Langer's lines, J. Invest. Dermatol., Volume 46 (1966) no. 4, pp. 341-346

[8] X. Liang; S.A. Boppart Biomechanical properties of in vivo human skin from dynamic optical coherence elastography, IEEE Trans. Biomed. Eng., Volume 57 (2010) no. 4, pp. 953-959

[9] J. María Benítez; F.J. Montáns The mechanical behavior of skin: structures and models for the finite element analysis, Comput. Struct., Volume 190 (2017), pp. 75-107

[10] R.B. Groves; S.A. Coulman; J.C. Birchall; S.L. Evans An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin, J. Mech. Behav. Biomed. Mater., Volume 18 (2013), pp. 167-180

[11] X. Romero; M. Latorre; F.J. Montáns Determination of the WYPiWYG strain energy density of skin through finite element analysis of the experiments on circular specimens, Finite Elem. Anal. Des., Volume 134 (2017), pp. 1-15

[12] F.H. Silver; J.W. Freeman; D. De Vore Viscoelastic properties of human skin and processed dermis, Skin Res. Technol., Volume 7 (2008), pp. 18-23

[13] C. Xie; N. Liu; Z.Y. Gao; D.Q. Liu; Z.D. Guo Investigating testing elasticity of equivalent material for human skin, Shanghai, China, September (2005), pp. 1-4 (pp. 5862–5864)

[14] J.C. Iatridis; J.R. Wu; J.A. Yandow Subcutaneous tissue mechanical behavior is linear and viscoelastic under uniaxial tension, Connect. Tissue Res., Volume 44 (2003), pp. 208-217

[15] Y.C. Fung Biomechanics: Mechanical Properties of Living Tissues, Springer Science & Business Media, 1993

[16] J. Jor; M. Parker; A. Taberner; M. Nash; P. Nielsen Computational and experimental characterization of skin mechanics: identifying current challenges and future directions, Wiley Interdiscip. Rev., Syst. Biol. Med., Volume 5 (2013) no. 5, pp. 539-556

[17] J. Gosline; M. Lillie; E. Carrington; P. Guerette; C. Ortlepp; K. Savage Elastic proteins: biological roles and mechanical properties, Philos. Trans. R. Soc. Lond. B, Biol. Sci., Volume 357 (2002) no. 1418, pp. 121-132

[18] F. Xu; T. Lu et al. Introduction to Skin Bio-Thermo Mechanics and Thermal Pain, vol. 7, Springer, New York, 2011

[19] F.H. Silver; J.W. Freeman; D. DeVore Viscoelastic properties of human skin and processed dermis, Skin Res. Technol., Volume 7 (2001) no. 1, pp. 18-23

[20] Y. Wang; K.L. Marshall; Y. Baba; E.A. Lumpkin; G.J. Gerling Compressive viscoelasticity of freshly excised mouse skin is dependent on specimen thickness, strain level and rate, PLoS ONE, Volume 10 (2015) no. 3

[21] W. Wong; T. Joyce; K. Goh Resolving the viscoelasticity and anisotropy dependence of the mechanical properties of skin from a porcine model, Biomech. Model. Mechanobiol., Volume 15 (2016) no. 2, pp. 433-446

[22] E. Ruvolo; G. Stamatas; N. Kollias Skin viscoelasticity displays site- and-age dependent angular anisotropy, Skin Pharmacol. Physiol., Volume 20 (2007) no. 6, pp. 313-321

[23] P.P. Purslow; T. Wess; D. Hukins Collagen orientation and molecular spacing during creep and stress-relaxation in soft connective tissues, J. Exp. Biol., Volume 201 (1998) no. 1, pp. 135-142

[24] R. Minns; P. Soden; D. Jackson The role of the fibrous components and ground substance in the mechanical properties of biological tissues: a preliminary investigation, J. Biomech., Volume 6 (1973) no. 2, pp. 153-165

[25] A. Delalleau; G. Josse; J.M. Lagarde; H. Zahouani; J.M. Bergheau Characterization of the mechanical properties of skin by inverse analysis combined with an extensometry test, Wear, Volume 264 (2008) no. 5–6, pp. 405-410

[26] C. Flynn; A. Taberner; P. Nielsen Mechanical characterization of in vivo human skin using a 3D force-sensitive microrobot and finite element analysis, Biomech. Model. Mechanobiol., Volume 10 (2011), pp. 27-38

[27] J.W.Y. Jor; P.M.F. Nielsen; M.P. Nash; P.J. Hunter Modelling collagen fibre orientation in porcine skin based upon confocal laser scanning microscopy, Skin Res. Technol., Volume 17 (2011) no. 2, pp. 149-159

[28] C.T. McCarthy; A. Ní Annaidh; M.D. Gilchrist On the sharpness of straight edge blades in cutting soft solids: part II—analysis of blade geometry, Eng. Fract. Mech., Volume 77 (2010) no. 3, pp. 437-451

[29] S. Dos Santos; D. Remache; M. Gratton; M. Caliez Skin hysteretic behavior using acousto mechanical imaging and nonlinear time reversal signal processing, Florense, Italy ( July 2015 )

[30] S. Dos Santos; V. Kus; D. Remache; J. Pittet; M. Gratton; M. Caliez Memory effects in the biomechanical behavior of ex vivo skin under acousto mechanical testings: a multiscale Preisach modeling of aging, Proceedings of the 23rd International Congress on Sound & Vibration, 2016

[31] M. Lints; A. Salupere; S. Dos Santos Simulation of solitary wave propagation in carbon fibre reinforced polymer, Proc. Est. Acad. Sci., Volume 64 (2015) no. 3, pp. 297-303

[32] M. Fink Time-reversal acoustics in biomedical engineering, Annu. Rev. Biomed. Eng., Volume 5 (2003) no. 1, pp. 465-497

[33] M. Fink Time reversal and phase conjugation with acoustic waves: industrial and medical applications, Lasers Electro-Opt., Volume 3 (2005), pp. 2334-2335

[34] S. Dos Santos; Z. Prevorovsky Imaging of human tooth using ultrasound-based chirp-coded nonlinear time reversal acoustics, Ultrasonics, Volume 51 (2011) no. 6, pp. 667-674

[35] H. Eshel; Y. Lanir Effects of strain level and proteoglycan depletion on preconditioning and viscoelastic responses of rat dorsal skin, Ann. Biomed. Eng., Volume 29 (2001) no. 2, pp. 164-172

[36] Y.C. Fung Biomechanics: Mechanical Properties of Living Tissues, Springer Verlag, New York, 1993

[37] A. Annaidha; K. Bruyèred; M. Destradea; Mi. Gilchrista; M. Otténiod Characterization of the anisotropic mechanical properties of excised human skin, J. Mech. Behav. Biomed. Mater., Volume 5 (2012), pp. 139-148

[38] G.Z. Kang; Y.J. Liu Uniaxial ratchetting and low-cycle fatigue failure of the steels with cyclic stabilizing or softening feature, Mater. Sci. Eng. A, Volume 472 (2008), pp. 258-268

[39] J.L. Chaboche A review of some plasticity and viscoplasticity constitutive theories, Int. J. Plast., Volume 24 (2008), pp. 1642-1693

[40] G.Z. Kang; W. Xinfeng Ratchetting of porcine skin under uniaxial cyclic loading, J. Mech. Behav. Biomed. Mater. A, Volume 472 (2011), pp. 498-506

[41] G. Wilkes; I. Brown; R. Wildnauer The biomechanical properties of skin, C.R.C. Crit. Rev. Bioeng., Volume 1 (1973) no. 4, pp. 453-495

[42] S. Dos Santos; M. Lints; D. Arruga; A. Masood; A. Salupere Standards for acousto-mechanical evaluation of multiscale hysteretic properties of complex material with nonlinear time reversal imaging, Proc. of the ICNDT Conference, 2017, pp. 49-57

[43] P.Y. Le Bas; M.C. Remillieux; L. Pieczonka; J.A. Ten Cate; B.E. Anderson; T.J. Ulrich Damage imaging in a laminated composite plate using an air coupled time reversal mirror, Appl. Phys. Lett., Volume 107 (2015) no. 18

[44] S. Dos Santos et al. Acousto-mechanical instrumentation of multiscale hysteretic memristive properties of the skin with nonlinear time reversal imaging, COSMETIC, Cergy-Pontoise, France (2017), pp. 1-4

Cited by Sources:

Comments - Policy