Comptes Rendus
Patterns and dynamics: homage to Pierre Coullet / Formes et dynamique : hommage à Pierre Coullet
A case of strong nonlinearity: Intermittency in highly turbulent flows
Comptes Rendus. Mécanique, Volume 347 (2019) no. 4, pp. 342-356.

It has long been suspected that flows of incompressible fluids at large or infinite Reynolds number (namely at small or zero viscosity) may present finite time singularities. We review briefly the theoretical situation on this point. We discuss the effect of a small viscosity on the self-similar solution to the Euler equations for inviscid fluids. Then we show that single-point records of velocity fluctuations in the Modane wind tunnel display correlations between large velocities and large accelerations in full agreement with scaling laws derived from Leray's equations (1934) for self-similar singular solutions to the fluid equations. Conversely, those experimental velocity–acceleration correlations are contradictory to the Kolmogorov scaling laws.

On pense depuis longtemps que les écoulements fluides incompressibles à grand, sinon infini, nombre de Reynolds présentent des singularités localisées en temps et en espace. Nous étudions l'effet d'une petite viscosité sur les solutions auto-semblables des équations des fluides. Nous montrons ensuite que des enregistrements de fluctuations de vitesse dans la soufflerie de Modane présentent des corrélations entre grandes vitesses et grandes accélérations, en accord complet avec les lois d'échelle déduites des solutions auto-similaires des équations trouvées par Leray en 1934. En revanche, ces corrélations sont en contradiction avec les lois d'échelle déduites de la théorie de Kolmogorov.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2019.03.002
Keywords: Navier–Stokes, Euler, Turbulence, Singularities, Leray, Intermittency
Mot clés : Navier–Stokes, Euler, Turbulence, Singularités, Leray, Intermittence

Yves Pomeau 1; Martine Le Berre 2; Thierry Lehner 3

1 Ladhyx, École polytechnique, 91128 Palaiseau, France
2 Ismo, Université Paris-Sud, 91405 Orsay cedex, France
3 Luth, Observatoire de Paris-Meudon, 92195 Meudon, France
@article{CRMECA_2019__347_4_342_0,
     author = {Yves Pomeau and Martine Le Berre and Thierry Lehner},
     title = {A case of strong nonlinearity: {Intermittency} in highly turbulent flows},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {342--356},
     publisher = {Elsevier},
     volume = {347},
     number = {4},
     year = {2019},
     doi = {10.1016/j.crme.2019.03.002},
     language = {en},
}
TY  - JOUR
AU  - Yves Pomeau
AU  - Martine Le Berre
AU  - Thierry Lehner
TI  - A case of strong nonlinearity: Intermittency in highly turbulent flows
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 342
EP  - 356
VL  - 347
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2019.03.002
LA  - en
ID  - CRMECA_2019__347_4_342_0
ER  - 
%0 Journal Article
%A Yves Pomeau
%A Martine Le Berre
%A Thierry Lehner
%T A case of strong nonlinearity: Intermittency in highly turbulent flows
%J Comptes Rendus. Mécanique
%D 2019
%P 342-356
%V 347
%N 4
%I Elsevier
%R 10.1016/j.crme.2019.03.002
%G en
%F CRMECA_2019__347_4_342_0
Yves Pomeau; Martine Le Berre; Thierry Lehner. A case of strong nonlinearity: Intermittency in highly turbulent flows. Comptes Rendus. Mécanique, Volume 347 (2019) no. 4, pp. 342-356. doi : 10.1016/j.crme.2019.03.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.03.002/

[1] P. Coullet; C. Tresser Itération d'endomorphismes et groupe de renormalisation, J. Phys., Colloq., Volume 5 (1978), pp. 25-28 (and C. r. hebd. séances Acad. sci. Paris, Ser. A, 287, 1978, pp. 577-580)

[2] M.J. Feigenbaum The universal metric properties of nonlinear transformations, J. Stat. Phys., Volume 21 (1979), pp. 669-706

[3] J. Maurer; A. Libchaber; J. Maurer; A. Libchaber J. Phys., Colloq., 40 (1979), p. C3-5

[4] Y. Pomeau Front motion, metastability and subcritical bifurcation in hydrodynamics, Physica D (1986), pp. 3-11

[5] G. Batchelor; A.A. Townsend The nature of turbulent motion at large wave-numbers, Proc. R. Soc., Volume 199 (1949), pp. 238-255

[6] A.N. Kolmogorov; A.N. Kolmogorov C. R. Acad. Sci. URSS, 30 (1941), p. 301

[7] Y. Gagne Étude expérimentale de l'intermittence et des singularités dans le plan complexe en turbulence développée, Université Grenoble-1, France, 1987 (PhD thesis)

[8] H. Kahalerras; Y. Malécot; Y. Gagne; B. Castaing Intermittency and Reynolds number, Phys. Fluids, Volume 10 (1998), p. 910

[9] J. Leray Essai sur le mouvement d'un fluide visqueux emplissant l'espace, Acta Math., Volume 63 (1934), pp. 193-248

[10] M-H. Giga; Y. Giga; J. Saal Nonlinear partial differential equations, Asymptotic Behavior of Solutions and Self-Similar Solutions, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA, USA, 2010, p. 93

[11] P. Lemarie-Rieusset The Navier–Stokes Problem in the 21st Century, CRC Press, Boca Raton, FL, USA, 2016

[12] J.D. Gibbon The three-dimensional Euler equations: where do we stand?, Physica D, Volume 237 (2008), pp. 1894-1904

[13] C. Josserand; M. Le Berre; T. Lehner; Y. Pomeau Turbulence: does energy cascade exist, J. Stat. Phys., Volume 167 (2017), pp. 596-625

[14] L.D. Landau; E.M. Lifshitz Fluid Mechanics, Pergamon, Oxford, UK, 1987 (section 106)

[15] J. Ginibre; M. Le Berre; Y. Pomeau Conservation of the circulation for the Euler and Euler–Leray equations | arXiv

[16] Y. Pomeau, M. Le Berre, in preparation.

[17] Y. Pomeau; Y. Pomeau Equation for self-similar singularity of Euler 3D, C. R. Mecanique, Volume 346, 2018 no. 3, pp. 184-197 https://dot.org/10.1016/j.crme.2017.12.004 | arXiv

[18] M. Bourgoin; C. Baudet; N. Mordant; T. Vandenberghe et al. Investigation of the small-scale statistics of turbulence in the Modane S1MA wind tunnel, CEAS Aeronaut. J., Volume 9 (2018) no. 2, pp. 269-281 | DOI

Cited by Sources:

Comments - Policy