It has long been suspected that flows of incompressible fluids at large or infinite Reynolds number (namely at small or zero viscosity) may present finite time singularities. We review briefly the theoretical situation on this point. We discuss the effect of a small viscosity on the self-similar solution to the Euler equations for inviscid fluids. Then we show that single-point records of velocity fluctuations in the Modane wind tunnel display correlations between large velocities and large accelerations in full agreement with scaling laws derived from Leray's equations (1934) for self-similar singular solutions to the fluid equations. Conversely, those experimental velocity–acceleration correlations are contradictory to the Kolmogorov scaling laws.
On pense depuis longtemps que les écoulements fluides incompressibles à grand, sinon infini, nombre de Reynolds présentent des singularités localisées en temps et en espace. Nous étudions l'effet d'une petite viscosité sur les solutions auto-semblables des équations des fluides. Nous montrons ensuite que des enregistrements de fluctuations de vitesse dans la soufflerie de Modane présentent des corrélations entre grandes vitesses et grandes accélérations, en accord complet avec les lois d'échelle déduites des solutions auto-similaires des équations trouvées par Leray en 1934. En revanche, ces corrélations sont en contradiction avec les lois d'échelle déduites de la théorie de Kolmogorov.
Accepted:
Published online:
Mots-clés : Navier–Stokes, Euler, Turbulence, Singularités, Leray, Intermittence
Yves Pomeau 1; Martine Le Berre 2; Thierry Lehner 3
@article{CRMECA_2019__347_4_342_0, author = {Yves Pomeau and Martine Le Berre and Thierry Lehner}, title = {A case of strong nonlinearity: {Intermittency} in highly turbulent flows}, journal = {Comptes Rendus. M\'ecanique}, pages = {342--356}, publisher = {Elsevier}, volume = {347}, number = {4}, year = {2019}, doi = {10.1016/j.crme.2019.03.002}, language = {en}, }
TY - JOUR AU - Yves Pomeau AU - Martine Le Berre AU - Thierry Lehner TI - A case of strong nonlinearity: Intermittency in highly turbulent flows JO - Comptes Rendus. Mécanique PY - 2019 SP - 342 EP - 356 VL - 347 IS - 4 PB - Elsevier DO - 10.1016/j.crme.2019.03.002 LA - en ID - CRMECA_2019__347_4_342_0 ER -
Yves Pomeau; Martine Le Berre; Thierry Lehner. A case of strong nonlinearity: Intermittency in highly turbulent flows. Comptes Rendus. Mécanique, Patterns and dynamics: homage to Pierre Coullet / Formes et dynamique: hommage à Pierre Coullet, Volume 347 (2019) no. 4, pp. 342-356. doi : 10.1016/j.crme.2019.03.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.03.002/
[1] Itération d'endomorphismes et groupe de renormalisation, J. Phys., Colloq., Volume 5 (1978), pp. 25-28 (and C. r. hebd. séances Acad. sci. Paris, Ser. A, 287, 1978, pp. 577-580)
[2] The universal metric properties of nonlinear transformations, J. Stat. Phys., Volume 21 (1979), pp. 669-706
[3] J. Phys., Colloq., 40 (1979), p. C3-5
[4] Front motion, metastability and subcritical bifurcation in hydrodynamics, Physica D (1986), pp. 3-11
[5] The nature of turbulent motion at large wave-numbers, Proc. R. Soc., Volume 199 (1949), pp. 238-255
[6] C. R. Acad. Sci. URSS, 30 (1941), p. 301
[7] Étude expérimentale de l'intermittence et des singularités dans le plan complexe en turbulence développée, Université Grenoble-1, France, 1987 (PhD thesis)
[8] Intermittency and Reynolds number, Phys. Fluids, Volume 10 (1998), p. 910
[9] Essai sur le mouvement d'un fluide visqueux emplissant l'espace, Acta Math., Volume 63 (1934), pp. 193-248
[10] Nonlinear partial differential equations, Asymptotic Behavior of Solutions and Self-Similar Solutions, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA, USA, 2010, p. 93
[11] The Navier–Stokes Problem in the 21st Century, CRC Press, Boca Raton, FL, USA, 2016
[12] The three-dimensional Euler equations: where do we stand?, Physica D, Volume 237 (2008), pp. 1894-1904
[13] Turbulence: does energy cascade exist, J. Stat. Phys., Volume 167 (2017), pp. 596-625
[14] Fluid Mechanics, Pergamon, Oxford, UK, 1987 (section 106)
[15] Conservation of the circulation for the Euler and Euler–Leray equations | arXiv
[16] Y. Pomeau, M. Le Berre, in preparation.
[17] Equation for self-similar singularity of Euler 3D, C. R. Mecanique, Volume 346, 2018 no. 3, pp. 184-197 https://dot.org/10.1016/j.crme.2017.12.004 | arXiv
[18] et al. Investigation of the small-scale statistics of turbulence in the Modane S1MA wind tunnel, CEAS Aeronaut. J., Volume 9 (2018) no. 2, pp. 269-281 | DOI
Cited by Sources:
Comments - Policy