Comptes Rendus
CFD for turbulence: from fundamentals to geophysics and astrophysics
Comptes Rendus. Mécanique, Online first (2022), pp. 1-20.

Over the years, the combination of computational fluid dynamics (CFD) and theoretical models have critically contributed to improving our understanding of the nature of turbulent flows. In this paper, we review the role of CFD in the study of turbulence through both direct numerical simulations and the resolution of statistical multi-scale theories. With a historical perspective, we will discuss the evolution of the numerical modeling of turbulence from the first numerical experiments as proposed by Orszag and Patterson [1] to complex geophysical and plasma simulations where body forces such as Coriolis, the buoyancy force, or the Lorentz force can introduce strong anisotropies. Looking beyond the horizon, we address the future challenges for CFD and turbulence theorists with the prospect of exascale supercomputing.

Received:
Accepted:
Online First:
DOI: 10.5802/crmeca.135
Keywords: Turbulence modeling, Direct numerical simulation, Turbulence theories, Statistical closure approaches, Large eddy simulation, Rotating and unstable stratified flows, Plasma and magnetohydrodynamics (MHD) turbulence

Claude Cambon 1; Alejandro Alvarez Laguna 2; Ye Zhou 3

1 Laboratoire de Mécanique des Fluides et d’Acoustique, Université de Lyon, UMR 5509, Ecole Centrale de Lyon, CNRS, UCBL, INSA F-69134 Ecully, France
2 Laboratoire de Physique des Plasmas (LPP), CNRS, Observatoire de Paris, Sorbonne Université, Université Paris Saclay, Ecole polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
3 Lawrence Livermore National Laboratory, Livermore, California 94550, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2022__350_S1_A11_0,
     author = {Claude Cambon and Alejandro Alvarez Laguna and Ye Zhou},
     title = {CFD for turbulence: from fundamentals to geophysics and astrophysics},
     journal = {Comptes Rendus. M\'ecanique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2022},
     doi = {10.5802/crmeca.135},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Claude Cambon
AU  - Alejandro Alvarez Laguna
AU  - Ye Zhou
TI  - CFD for turbulence: from fundamentals to geophysics and astrophysics
JO  - Comptes Rendus. Mécanique
PY  - 2022
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crmeca.135
LA  - en
ID  - CRMECA_2022__350_S1_A11_0
ER  - 
%0 Journal Article
%A Claude Cambon
%A Alejandro Alvarez Laguna
%A Ye Zhou
%T CFD for turbulence: from fundamentals to geophysics and astrophysics
%J Comptes Rendus. Mécanique
%D 2022
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crmeca.135
%G en
%F CRMECA_2022__350_S1_A11_0
Claude Cambon; Alejandro Alvarez Laguna; Ye Zhou. CFD for turbulence: from fundamentals to geophysics and astrophysics. Comptes Rendus. Mécanique, Online first (2022), pp. 1-20. doi : 10.5802/crmeca.135.

[1] S. A. Orszag; G. S. Patterson Numerical simulation of three-dimensional homogeneous isotropic turbulence, Phys. Rev. Lett., Volume 39 (1972), pp. 76-79 | DOI | Zbl

[2] Y. Zhou Turbulence theories and statistical closure approaches, Phys. Rep., Volume 935 (2021), pp. 1-117 | DOI | MR | Zbl

[3] M. Raffel; C. E. Willert; J. Kompenhans Particle Image Velocimetry: a Practical Guide, 2, Springer, Berlin, 1998 | DOI

[4] S. A. Orszag Analytical theories of turbulence, J. Fluid Mech., Volume 41 (1970), pp. 363-386 | DOI | Zbl

[5] C. E. Leith Atmospheric predictability and two-dimensional turbulence, J. Atmos. Sci., Volume 28 (1971), pp. 145-161 | DOI | Zbl

[6] P. K. Yeung; K. Ravikumar Advancing understanding of turbulence through extreme-scale computation: Intermittency and simulations at large problem sizes, Phys. Rev. Fluids, Volume 5 (2020) no. 11, 110517 | DOI

[7] S. M. Ulam Adventures of a Mathematician, University of California Press, Berkeley and Los Angeles, California, 1991

[8] W. Aspray John von Neumann and the Origins of Modern Computing, MIT Press, Cambridge, MA, 1990 | MR

[9] P. Moin; K. Mahesh Direct numerical simulation: a tool in turbulence research, Annu. Rev. Fluid Mech., Volume 30 (1998) no. 1, pp. 539-578 | DOI | MR | Zbl

[10] D. Buaria; A. Pumir; E. Bodenschatz; P. K. Yeung Extreme velocity gradients in turbulent flows, New J. Phys., Volume 21 (2019), 043004 | DOI

[11] N. Cao; S. Chen; Z.-S. She Scalings and relative scalings in the Navier–Stokes turbulence, Phys. Rev. Lett., Volume 76 (1996), pp. 3711-3714 | DOI

[12] T. Ishihara; T. Gotoh; Y. Kaneda Study of high-Reynolds number isotropic turbulence by direct numerical simulation, Annu. Rev. Fluid Mech., Volume 41 (2009), pp. 165-180 | DOI | MR | Zbl

[13] K. P. Iyer; J. Schumacher; K. R. Sreenivasan; P. K. Yeung Steep cliffs and saturated exponents in three-dimensional scalar turbulence, Phys. Rev. Lett., Volume 121 (2018), 264501

[14] K. P. Iyer; K. R. Sreenivasan; P. K. Yeung Circulation in high Reynolds number isotropic turbulence is a bifractal, Phys. Rev. X, Volume 9 (2019), 041006

[15] K. P. Iyer; K. R. Sreenivasan; P. K. Yeung Scaling exponents saturate in three-dimensional isotropic turbulence, Phys. Rev. Fluids, Volume 5 (2020), 054605

[16] Y. Kaneda; T. Ishihara; M. Yokokawa; K. I. Itakura; A. Uno Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box, Phys. Fluids, Volume 15 (2003), p. L21-L24 | DOI | Zbl

[17] P. K. Yeung; K. R. Sreenivasan; S. B. Pope Effects of finite spatial and temporal resolution in direct numerical simulations of incompressible isotropic turbulence, Phys. Rev. Fluids, Volume 3 (2018), 064603 | DOI

[18] S. B. Pope Turbulent Flows, Cambridge University Press, Cambridge, England, 2011

[19] S. K. Lele Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., Volume 103 (1992) no. 1, pp. 16-42 | DOI | MR | Zbl

[20] C. Hirsch Numerical Computation of Internal and External Flows, 2, Wiley, West Sussex, UK, 1990

[21] J. P. Goedbloed; R. Keppens; S. Poedts Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas, Cambridge University Press, Cambridge, England, 2010 | DOI

[22] R. Rogallo Numerical experiments in homogeneous turbulence, 1981 (NASA Tech. Mem. No. 81315)

[23] G. Lesur; P.-Y. Longaretti On the relevance of subcritical hydrodynamic turbulence to accretion disk transport, Astron. Astrophys., Volume 444 (2005), pp. 25-44 | DOI | Zbl

[24] Y. Zhu; C. Cambon; F. S. Godeferd; A. Salhi Nonlinear spectral model for rotating sheared turbulence, J. Fluid Mech., Volume 866 (2019), pp. 5-32 | DOI | MR | Zbl

[25] V. Makarashvilia; E. Merzaria; A. Obabkoa; A. Siegela; P. Fischer A performance analysis of ensemble averaging for high fidelity turbulence simulations at the strong scaling limit, Comput. Phys. Commun., Volume 219 (2017), pp. 236-245 | DOI

[26] Y. Zhou Unification and extension of the similarity scaling criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerical simulations, Phys. Plasmas, Volume 14 (2007) no. 8, 082701 | DOI

[27] H. L. Grant; R. W. Stewart; A. Moilliet Turbulence spectra from a tidal channel, J. Fluid Mech., Volume 12 (1962) no. 2, pp. 241-268 | DOI | Zbl

[28] A. A. Praskovsky; E. B. Gledzer; M. Y. Karyakin; Y. Zhou The sweeping decorrelation hypothesis and energy-inertial scale interaction in high Reynolds number flows, J. Fluid Mech., Volume 248 (1993), pp. 493-511 | DOI | Zbl

[29] S. G. Saddoughi; S. V. Veeravalli Local isotropy in turbulent boundary layers at high Reynolds number, J. Fluid Mech., Volume 268 (1994), pp. 333-372 | DOI

[30] P. Sagaut; C. Cambon Homogeneous Turbulence Dynamics (Monograph), Springer, Cham, 2018 | DOI

[31] V. Bouillaut; S. Lepot; S. Aumaître; B. Gallet Transition to the ultimate regime in a radiatively driven convection experiment, J. Fluid Mech., Volume 861 (2019), R5 | DOI | MR | Zbl

[32] F. Waleffe The nature of triad interactions in homogeneous turbulence, Phys. Fluids A, Volume 4 (1992), pp. 350-363 | DOI | MR | Zbl

[33] C. Cambon; L. Jacquin Spectral approach to non-isotropic turbulence subjected to rotation, J. Fluid Mech., Volume 202 (1989), pp. 295-317 | DOI | Zbl

[34] F. Bellet; F. S. Godeferd; J. F. Scott; C. Cambon Wave-turbulence in rapidly rotating flows, J. Fluid Mech., Volume 562 (2006), pp. 83-121 | DOI | MR | Zbl

[35] S. Galtier Weak inertial wave-turbulence theory, Phys. Rev. E, Volume 68 (2003), 015301 | DOI

[36] T. Le Reun; B. Gallet; B. Favier; M. Le Bar Near-resonant instability of geostrophic modes: beyond Greenspan’s theorem, J. Fluid Mech., Volume 900 (2020), R2 | DOI | MR | Zbl

[37] Y. Zhou Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I, Phys. Rep., Volume 720–722 (2017), pp. 1-136 | Zbl

[38] Y. Zhou Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II, Phys. Rep., Volume 723–725 (2017), pp. 1-160 | MR | Zbl

[39] Y. Zhou; T. T. Clark; D. S. Clark; S. Gail Glendinning; M. Aaron Skinner; C. M. Huntington; O. A. Hurricane; A. M. Dimits; B. A. Remington Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities, Phys. Plasmas, Volume 26 (2019) no. 8, 080901 | DOI

[40] Y. Zhou; R. J. Williams; P. Ramaprabhu; M. Groom; B. Thornber; A. Hillier; W. Mostert; B. Rollin; S. Balachandar; P. D. Powell; A. Mahalov Rayleigh–Taylor and Richtmyer–Meshkov instabilities: A journey through scales, Phys. D: Nonlinear Phenom., Volume 423 (2021), 132838 | DOI | MR | Zbl

[41] O. Soulard; J. Griffond; B. J. Gréa; G. Viciconte Permanence of large eddies in decaying variable-density homogeneous turbulence with small Mach numbers, Phlys. Rev. Fluids, Volume 5 (2020) no. 6, 064613

[42] A. Delache; C. Cambon; F. Godeferd Scale by scale anisotropy in freely decaying rotating turbulence, Phys. Fluids, Volume 26 (2014), 025104 | DOI

[43] R. Marino; P. D. Mininni; D. L. Rosenberg; A. Pouquet Large-scale anisotropy in stably stratified rotating flows, Phys. Rev. E, Volume 90 (2014), 023018 | DOI

[44] B. Galperin; S. Sukoriansky Turbulence in rotating fluids and the Nastrom and Gage spectrum, Invited talk Sixth International Conference Turbulence Mixing and Beyond, ICTP, Trieste (Italy) (2017)

[45] Zonal Jets: Phenomenology, Genesis, and Physics (B. Galperin; P. L. Read, eds.), Cambridge University Press, Cambridge, England, 2019 | DOI

[46] B. McKeon The engine behind (wall) turbulence: Perspectives on scale interactions, J. Fluid Mech., Volume 817 (2017), P1 | DOI | MR | Zbl

[47] B. F. Farrell; D. F. Gayme; P. J. Ioannou A statistical state dynamics approach to wall turbulence, Philos. Trans. R. Soc. A, Volume 375 (2017), 20160081 | DOI

[48] J. Smagorinsky General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Rev., Volume 91 (1963), pp. 99-164 | DOI

[49] G. Holloway Entropic forces in geophysical fluid dynamics, Entropy, Volume 11 (2009) no. 3, pp. 360-383 | DOI | MR

[50] J. A. van Hooft; S. Popinet; B. J. H. van de Wiel Adaptive Cartesian meshes for atmospheric single-column models: a study using Basilisk 18-02-16, Geosci. Model Dev., Volume 11 (2018), pp. 4727-4738 | DOI

[51] P. Gent; J. C. McWilliams Isopycnal mixing in ocean circulation models, J. Phys. Oceanogr., Volume 20 (1990) no. 1, pp. 150-155 | DOI

[52] P. D. Williams Increased light, moderate, and severe clear-air turbulence in response to climate change, Adv. Atmos. Sci., Volume 34 (2017), pp. 576-586 | DOI

[53] S. Watanabe; M. Fujita; S. Kawazoe; S. Sugimoto; Y. Okada; R. Mizuta; M. Ishii Frequency change of clear-air turbulence over the north Pacific under 2 k global warming—ensemble projections using a 60-km atmospheric general circulation model, J. Meteorol. Soc. Jpn Ser II, Volume 97 (2019), pp. 757-771 | DOI

[54] M. Ghil; V. Lucarini The physics of climate variability and climate change, Rev. Mod. Phys., Volume 92 (2020), 035002 | DOI | MR

[55] K. G. Pressel; S. Mishra; T. Schneider; C. M. Kaul; Z. Tan Numerics and subgrid-scale modeling in large eddy simulations of stratocumulus clouds, J. Adv. Model. Earth Syst., Volume 9 (2017), pp. 1342-1365 | DOI

[56] D. Biskamp Magnetohydrodynamic Turbulence (Monograph), Cambridge University Press, Cambridge, England, 2003 | DOI

[57] A. Schekochihin MHD turbulence: A biased review, J. Plasma Phys., Volume 88 (2022) no. 5, 155880501 | DOI

[58] Y. Zhou; W. H. Matthaeus; P. Dmitruk Colloquium: Magnetohydrodynamic turbulence and time scales in astrophysical and space plasmas, Rev. Mod. Phys., Volume 76 (2004) no. 4, pp. 1015-1035 | DOI

[59] K. H. Kiyani; K. T. Osman; S. C. Chapman Dissipation and heating in solar wind turbulence: from the macro to the micro and back again, Philos. Trans. R. Soc. A, Volume 373 (2015), 20140155 | DOI

[60] P. Goldreich; S. Sridhar Toward a theory of interstellar turbulence. 2: Strong Alfvenic turbulence, Astrophys. J., Volume 438 (1995), pp. 763-775 | DOI

[61] D. Fyfe; D. Montgomery; G. Joyce Magnetic dynamo action in two-dimensional turbulent magneto-hydrodynamics, J. Plasma Phys., Volume 17 (1977), pp. 317-335 | DOI

[62] A. Pouquet; G. Patterson Numerical simulation of helical magnetohydrodynamic turbulence, J. Fluid Mech., Volume 85 (1978) no. 2, pp. 305-323 | DOI | Zbl

[63] S. A. Orszag; C. M. Tang Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. Fluid Mech., Volume 90 (1979), pp. 129-143 | DOI

[64] D. Biskamp; H. Welter Dynamics of decaying two-dimensional magnetohydrodynamics turbulence, Phys. Fluids B, Volume 1 (1989), pp. 1964-1979 | DOI

[65] H. Politano; A. Pouquet; P. L. Sulem Current and vorticity dynamics in three-dimensional magnetohydrodynamic turbulence, Phys. Plasmas, Volume 2 (1995), pp. 2931-2939 | DOI | MR

[66] D. Biskamp; W.-C. Muller Decay laws for three-dimensional magnetohydrodynamic turbulence, Phys. Rev. Lett., Volume 83 (1999), pp. 2195-2198 | DOI

[67] P. D. Mininni; A. Pouquet Energy spectra stemming from interactions of Alfvén waves and turbulent eddies, Phys. Rev. Lett., Volume 99 (2007), 254502 | DOI

[68] S. Boldyrev Spectrum of magnetohydrodynamic turbulence, Phys. Rev. Lett., Volume 96 (2006), 115002 | DOI

[69] A. Beresnyak The spectral slope and Kolmogorov constant of MHD turbulence, Phys. Rev. Lett., Volume 106 (2011), 075001 | DOI

[70] A. Beresnyak Spectra of strong magnetohydrodynamic turbulence from high-resolution simulations, Astrophys. J., Volume 784 (2014), L20 | DOI

[71] M. Linkmann; A. Berera; E. E. Goldstraw Reynolds-number dependence of the dimensionless dissipation rate in homogeneous magnetohydrodynamic turbulence, Phys. Rev. E, Volume 95 (2017) no. 1, 013102 | DOI | MR

[72] R. Bandyopadhyay; S. Oughton; M. Wan; W. H. Matthaeus; R. Chhiber; T. N. Parashar Finite dissipation in anisotropic magnetohydrodynamic turbulence, Phys. Rev. X, Volume 8 (2018) no. 4, 041052

[73] X. M. Zhai; K. R. Sreenivasan; P. K. Yeung Cancellation exponents in isotropic turbulence and magnetohydrodynamic turbulence, Phys. Rev. E, Volume 99 (2019) no. 2, 023102

[74] X. M. Zhai; P. K. Yeung Evolution of anisotropy in direct numerical simulations of MHD turbulence in a strong magnetic field on elongated periodic domains, Phys. Rev. Fluids, Volume 3 (2018), 084602

[75] V. E. Zakharov; V. S. L’vov; G. Falkovich Kolmogorov Spectra of Turbulence I: Wave Turbulence, Springer, Berlin, 1992 | DOI

[76] S. Nazarenko Wave Turbulence, Springer, Berlin, 2011 | DOI

[77] S. Galtier; S. V. Nazarenko; A. C. Newell; A. Pouquet A weak turbulence theory for incompressible magnetohydrodynamics, J. Plasma Phys., Volume 63 (2000), pp. 447-448 | DOI | Zbl

[78] C. Cambon; R. Rubinstein; F. S. Godeferd Advances in wave turbulence: Rapidly rotating flows, New J. Phys., Volume 6 (2004), 73 | DOI | MR

[79] A. Pouquet; U. Frisch; J. Leorat Strong MHD helical turbulence and the nonlinear dynamo effect, J. Fluid Mech., Volume 77 (1976), pp. 321-354 | DOI | Zbl

[80] W. H. Matthaeus; Y. Zhou Extended inertial range phenomenology of magnetohydrodynamic turbulence, Phys. Fluids B, Volume 1 (1989), pp. 1929-1931 | DOI

[81] R. Grappin; U. Frisch; A. Pouquet; J. Leorat Alfvnic fluctuations as asymptotic states of MHD turbulence, Astron. Astrophys., Volume 105 (1982), pp. 6-14 | Zbl

[82] R. Grappin; J. Leorat; A. Pouquet Dependence of MHD turbulence spectra on the velocity field-magnetic field correlation, Astron. Astrophys., Volume 126 (1983), pp. 51-58

[83] A. Briard; T. Gomez The decay of isotropic magnetohydrodynamics turbulence and the effects of cross-helicity, J. Plasma Phys., Volume 84 (2018), 905840110 | DOI

[84] C. Cambon Homogeneous MHD turbulence at weak magnetic Reynolds numbers: approach to angular-dependent spectra, Advances in Turbulence Studies (H. Branover; Y. Unger, eds.) (Progresses in Astronautics and Aeronautics), Volume 149, AIAA, Washington, DC, 1991, pp. 131-145 (ISBN 1-56347-018-7)

[85] B. F. N. Favier; F. S. Godeferd; C. Cambon On the effect of rotation on magnetohydrodynamic turbulence at high magnetic Reynolds number, Geophys. Astrophys. Fluid Dyn., Volume 106 (2011), pp. 89-111 | DOI | MR

[86] Y. Zhou; W. H. Matthaeus Phenomenology treatment of magnetohydrodynamic turbulence with nonequipartition and anisotropy, Phys. Plasmas, Volume 12 (2005), 056503 | DOI

[87] C. S. Ng; A. Bhattacharjee Scaling of anisotropic spectra due to the weak interaction of shear-Alfvén wave packets, Phys. Plasmas, Volume 4 (1997), pp. 605-610 | DOI

[88] M. Miesch; W. Matthaeus; A. Brandenburg; A. Petrosyan; A. Pouquet; C. Cambon; F. Jenko; D. Uzdensky; J. Stone; S. Tobias; J. Toomre Large-eddy simulations of magnetohydrodynamic turbulence in heliophysics and astrophysics, Space Sci. Rev., Volume 194 (2015), pp. 97-137 | DOI

[89] O. Agullo; W. C. Müller; B. Knaepen; D. Carati Large eddy simulation of decaying magnetohydrodynamic turbulence with dynamic subgrid-modeling, Phys. Plasmas, Volume 8 (2001), pp. 3502-3505 | DOI

[90] W. C. Müller; D. Carati Dynamic gradient-diffusion subgrid models for incompressible magnetohydrodynamic turbulence, Phys. Plasmas, Volume 9 (2002), pp. 824-834 | DOI

[91] B. Knaepen; P. Moin Large-eddy simulation of conductive flows at low magnetic Reynolds number, Phys. Fluids, Volume 16 (2004), pp. 1255-1261 | DOI | MR | Zbl

[92] A. Yoshizawa Subgrid modeling for magnetohydrodynamic turbulent shear flows, Phys. Fluids, Volume 30 (1987), pp. 1089-1095 | DOI | Zbl

[93] Y. Zhou; O. Schilling; S. Ghosh Subgrid scale and backscatter model for magnetohydrodynamic turbulence based on closure theory: Theoretical formulation, Phys. Rev. E, Volume 66 (2002), 026309 | DOI

[94] H. Aluie Coarse-grained incompressible magnetohydrodynamics: Analyzing the turbulent cascades, New J. Phys., Volume 19 (2017), 025008 | DOI

[95] Y. Zhou Renormalization group theory for fluid and plasma turbulence, Phys. Rep., Volume 488 (2010), pp. 1-9 | DOI | MR

[96] D. H. Hathaway The solar cycle, Living Rev. Sol. Phys., Volume 12 (2015), 4 | DOI

[97] P. Chabonneau Dynamo models of the solar cycle, Living Rev. Sol. Phys., Volume 17 (2020), 4

[98] S. Lantz; Y. Fan Anelastic magnetohydrodynamic equations for modeling solar and stellar convection zones, Astrophys. J. Suppl. Ser., Volume 121 (1999), pp. 247-264 | DOI

[99] S. I. Braginsky; P. H. Roberts Equations governing convection in earth’s core and the geodynamo, Geophys. Astrophys. Fluid Dyn., Volume 79 (1995) no. 1–4, pp. 1-97 | DOI

[100] Y. Zhou; F. F. Grinstein; A. J. Wachtor; B. M. Haines Estimating the effective Reynolds number in implicit large-eddy simulation, Phys. Rev. E, Volume 89 (2014), 013303 | DOI

[101] A. S. Brun; M. S. Miesch; J. Toomre Global-scale turbulent convection and magnetic dynamo action in the solar envelope, Astrophys. J., Volume 614 (2004), pp. 1073-1098 | DOI

[102] I. N. Kitiashvili; A. G. Kosovichev; N. N. Mansour; A. A. Wray Realistic modeling of local dynamo processes on the Sun, Astrophys. J., Volume 809 (2015) no. 1, 84 | DOI

[103] A. A. Wray; K. Bensassi; I. N. Kitiashvili; N. N. Mansour; A. G. Kosovichev Simulations of stellar magnetoconvection using the radiative MHD code ‘StellarBox’, 2015 (ArXiv e-prints) | arXiv

[104] P. Moin; K. Squires; W. Cabot; S. Lee A dynamic subgrid-scale model for compressible turbulence and scalar transport, Phys. Fluids A: Fluid Dyn., Volume 3 (1991) no. 11, pp. 2746-2757 | DOI | Zbl

[105] A. Alvarez Laguna Multi-fluid modeling of magnetic reconnection in solar partially ionized and laboratory plasmas, Ph. D. Thesis, VKI (2018) | DOI

[106] A. Alvarez Laguna; A. Lani; N. N. Mansour; H. Deconinck; S. Poedts Effect of radiation on chromospheric magnetic reconnection: reactive and collisional multi-fluid simulations, Astrophys. J., Volume 842 (2017), 117 | DOI

[107] E. Khomenko; M. Collados; T. Felipe Nonlinear numerical simulations of magneto-acoustic wave propagation in small-scale flux tubes, Solar Phys., Volume 251 (2008), pp. 589-611 | DOI

[108] Y. G. Maneva; A. A. Laguna; A. Lani; S. Poedts Multi-fluid modeling of magnetosonic wave propagation in the solar chromosphere: effects of impact ionization and radiative recombination, Astrophys. J., Volume 836 (2017) no. 2, 197 | DOI

[109] B. V. Gudiksen; M. Carlsson; V. H. Hansteen; W. Hayek; J. Leenaarts; J. Martnez-Sykora The stellar atmosphere simulation code Bifrost, Astron. Astrophys., Volume 531 (2011), A154 | DOI

[110] I. Kitiashvili; A. Wray; V. Sadykov; A. Kosovichev; N. Mansour Realistic 3D MHD modeling of self-organized magnetic structuring of the solar corona, Proc. Int. Astron. Union, Volume 15 (2019) no. S354, pp. 346-350 | DOI

[111] B. van der Holst; I. V. Sokolov; X. Meng; M. Jin; W. B. Manchester IV; G. Tóth; T. I. Gombosi Alfvén wave solar model (AWSoM): coronal heating, Astrophys. J., Volume 782 (2014), pp. 81-96 | DOI

[112] P. Dmitruk; W. H. Matthaeus; L. J. Milano; S. Oughton; G. P. Zank; D. J. Mullan Coronal heating distribution due to low-frequency, wave-driven turbulence, Astrophys. J., Volume 575 (2002), pp. 571-577 | DOI

[113] S. A. Balbus; J. F. Hawley A powerful local shear instability in weakly magnetized discs, Astrophys. J., Volume 376 (1991), pp. 214-233 | DOI

[114] A. Salhi; C. Cambon An analysis of rotating shear flow using linear theory and DNS and LES results, J. Fluid Mech., Volume 347 (1997), pp. 171-195 | DOI | MR | Zbl

[115] R. Balescu Aspects of Anomalous Transport in Plasmas, CRC Press, Bristol, UK, 2005 | DOI

[116] T. Lafleur; S. D. Baalrud; P. Chabert Characteristics and transport effects of the electron drift instability in Hall-effect thrusters, Plasma Sources Sci. Technol., Volume 26 (2017), 024008 | DOI

[117] O. Koshkarov; A. Smolyakov; Y. Raitses; I. Kaganovich Self-organization, structures, and anomalous transport in turbulent partially magnetized plasmas with crossed electric and magnetic fields, Phys. Rev. Lett., Volume 122 (2019), 185001 | DOI

[118] T. Charoy; T. Lafleur; A. Alvarez-Laguna; A. Bourdon; P. Chabert The interaction between ion transit-time and electron drift instabilities and their effect on anomalous electron transport in Hall thrusters, Sources Sci. Technol., Volume 30 (2021), 065017

[119] Ö. D. Gürkan; X. Garbet; P. Hennequin; P. H. Diamond; A. Casati; G. L. Falchetto Wave-number spectrum of drift-wave turbulence, Phys. Rev. Lett., Volume 102 (2009) no. 25, 255002

[120] A. A. Schekochihin; S. C. Cowley; W. Dorland; G. W. Hammett; G. G. Howes; G. G. Plunk; E. Quataert; T. Tatsuno Gyrokinetic turbulence: a nonlinear route to dissipation through phase space, Plasma Phys. Control. Fusion, Volume 50 (2008) no. 12, 124024 | DOI

[121] V. Grandgirard; Y. Sarazin; X. Garbet; G. Dif-Pradalier; P. Ghendrih; N. Crouseilles; G. Latu; E. Sonnendrücker; N. Besse; P. Bertrand GYSELA, a full-f global gyrokinetic semi-Lagrangian code for ITG turbulence simulations, AIP Conf. Proc., Volume 871 (2006) no. 1, pp. 100-111 | DOI

[122] B. Chaouat The state of the art of hybrid RANS/LES modeling for the simulation of turbulent flows, Flow Turbul. Combust., Volume 99 (2017), pp. 279-327 | DOI

[123] G. Falkovich; K. Gawedzki; M. Vergassola Particles and fields in fluid turbulence, Rev. Mod. Phys., Volume 73 (2001), pp. 913-975 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy