The state-of-the-art of insect flight research using advanced computational fluid dynamics techniques on supercomputers is reviewed, focusing mostly on the work of the present authors. We present a brief historical overview, discuss numerical challenges and introduce the governing model equations. Two open source codes, one based on Fourier, the other based on wavelet representation, are succinctly presented and a mass-spring flexible wing model is described. Various illustrations of numerical simulations of flapping insects at low, intermediate and high Reynolds numbers are presented. The role of flexible wings, data-driven modeling and fluid–structure interaction issues are likewise discussed.
Accepted:
Online First:
Thomas Engels 1; Hung Truong 2; Marie Farge 3; Dmitry Kolomenskiy 4; Kai Schneider 2
@article{CRMECA_2022__350_S1_A10_0, author = {Thomas Engels and Hung Truong and Marie Farge and Dmitry Kolomenskiy and Kai Schneider}, title = {Computational aerodynamics of insect flight using volume penalization}, journal = {Comptes Rendus. M\'ecanique}, publisher = {Acad\'emie des sciences, Paris}, year = {2022}, doi = {10.5802/crmeca.129}, language = {en}, note = {Online first}, }
TY - JOUR AU - Thomas Engels AU - Hung Truong AU - Marie Farge AU - Dmitry Kolomenskiy AU - Kai Schneider TI - Computational aerodynamics of insect flight using volume penalization JO - Comptes Rendus. Mécanique PY - 2022 PB - Académie des sciences, Paris N1 - Online first DO - 10.5802/crmeca.129 LA - en ID - CRMECA_2022__350_S1_A10_0 ER -
%0 Journal Article %A Thomas Engels %A Hung Truong %A Marie Farge %A Dmitry Kolomenskiy %A Kai Schneider %T Computational aerodynamics of insect flight using volume penalization %J Comptes Rendus. Mécanique %D 2022 %I Académie des sciences, Paris %Z Online first %R 10.5802/crmeca.129 %G en %F CRMECA_2022__350_S1_A10_0
Thomas Engels; Hung Truong; Marie Farge; Dmitry Kolomenskiy; Kai Schneider. Computational aerodynamics of insect flight using volume penalization. Comptes Rendus. Mécanique, Online first (2022), pp. 1-20. doi : 10.5802/crmeca.129.
[1] Determination experimentale du mouvement des ailes des insectes pendant le vol, C. R. Acad. Sci. Paris, Volume 67 (1868), pp. 1341-1345
[2] Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production, J. Exp. Biol., Volume 59 (1973), pp. 169-230 | DOI
[3] On the Weis-Fogh mechanism of lift generation, J. Fluid Mech., Volume 60 (1973) no. 1, pp. 1-17 | DOI | Zbl
[4] Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’, J. Fluid Mech., Volume 93 (1979) no. 1, pp. 47-63 | DOI
[5] The Lighthill–Weis-Fogh clap-fling-sweep mechanism revisited, J. Fluid Mech., Volume 676 (2011), pp. 572-606 | DOI | MR | Zbl
[6] Mathematical Biofluiddynamics, SIAM, Philadelphia, PA, 1975 | DOI
[7] Numerical analysis of blood flow in the heart, J. Comput. Phys., Volume 25 (1977), pp. 220-252 | DOI | MR | Zbl
[8] Flow patterns around heart valves: a digital computer method for solving the equations of motion, Ph. D. Thesis, The Albert Einstein College of Medicine, New York, NY (1972)
[9] The fluid dynamics of insect flight, Annu. Rev. Fluid Mech., Volume 13 (1981) no. 1, pp. 329-350 | DOI
[10] The aerodynamics of insect flight, J. Exp. Biol., Volume 206 (2003), pp. 4191-4208 | DOI
[11] Dissecting insect flight, Annu. Rev. Fluid Mech., Volume 37 (2005), pp. 183-210 | DOI | MR | Zbl
[12] Insect flight: from Newton’s law to neurons, Annu. Rev. Condens. Matter Phys., Volume 7 (2016), pp. 281-300 | DOI
[13] A review of biomimetic air vehicle research: 1984–2014, Int. J. Micro Air Veh., Volume 7 (2015) no. 3, pp. 375-394 | DOI
[14] Ground effect in fruit fly hovering: A three-dimensional computational study, J. Biomech. Sci. Eng., Volume 8 (2013), pp. 344-355 | DOI
[15] Mechanics of forward flight in bumblebees I. Kinematics and morphology, J. Exp. Biol., Volume 148 (1990), pp. 19-52 | DOI
[16] Integrated modeling of insect flight: From morphology, kinematics to aerodynamics, J. Comput. Phys., Volume 228 (2009), pp. 439-459 | DOI | MR | Zbl
[17] A numerical study of insect flight, J. Comput. Phys., Volume 146 (1998), pp. 124-156 | DOI | Zbl
[18] A three-dimensional computational study of the aerodynamic mechanisms of insect flight, J. Exp. Biol., Volume 205 (2002), pp. 1507-1518 | DOI
[19] A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering, J. Exp. Biol., Volume 210 (2009), pp. 881-896 | DOI
[20] Wing rotation and the aerodynamic basis of insect flight, Science, Volume 284 (1999), pp. 1954-1960 | DOI
[21] The immersed boundary method, Acta Numer., Volume 11 (2002), pp. 479-517 | DOI | MR | Zbl
[22] A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., Volume 81 (1999), pp. 497-520 | DOI | MR | Zbl
[23] Immersed boundary methods, Annu. Rev. Fluid Mech., Volume 37 (2005), pp. 239-261 | DOI | MR | Zbl
[24] Immersed boundary methods for numerical simulation of confined fluid and plasma turbulence in complex geometries: a review., J. Plasma Phys., Volume 81 (2015), 435810601 | DOI
[25] Lift and thrust generation by a butterfly-like flapping wing-body model: immersed boundary-lattice Boltzmann simulations, J. Fluid Mech., Volume 767 (2015), pp. 659-695 | DOI | MR
[26] Aerodynamic forces and vortical structures in flapping butterfly’s forward flight, Phys. Fluids, Volume 25 (2013), 021902 | DOI
[27] Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies, PLoS ONE, Volume 8 (2013) no. 1, e53060 | DOI
[28] Details of insect wing design and deformation enhance aerodynamic function and flight efficiency, Science, Volume 325 (2009) no. 5947, pp. 1549-1552 | DOI
[29] Numerical modelling of flexible heaving foils, J. Aero Aqua Bio-Mech., Volume 3 (2013), pp. 22-28 | DOI
[30] Flexible clap and fling in tiny insect flight, J. Exp. Biol., Volume 212 (2009), pp. 3076-3090 | DOI
[31] A fluid-structure interaction model of insect flight with flexible wings, J. Comput. Phys., Volume 231 (2012) no. 4, pp. 1822-1847 | DOI | MR | Zbl
[32] Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach, Proc. R. Soc. B, Volume 279 (2012) no. 1729, pp. 722-731 | DOI
[33] A mass-spring fluid-structure interaction solver: application to flexible revolving wings, Comput. Fluids, Volume 200 (2020), 104426 | DOI | MR | Zbl
[34] Sur les conditions hydrodynamiques au voisinage d’une interface milieu fluide milieu poreux: application à la convection naturelle, C. R. Acad. Sci. Paris, Sér. II, Volume 299 (1984), pp. 1-4
[35] A Fourier spectral method for the Navier–Stokes equations with volume penalization for moving solid obstacles, J. Comput. Phys., Volume 228 (2009), pp. 5687-5709 | DOI | MR | Zbl
[36] Two-dimensional simulation of the fluttering instability using a pseudospectral method with volume penalization, Comput. Struct., Volume 122 (2012), pp. 101-112 | DOI
[37] Boundary layer for a penalization method for viscous incompressible flow, Adv. Differ. Equ., Volume 8 (2003), pp. 1453-2480 | MR | Zbl
[38] Numerical simulation of fluid-structure interaction with the volume penalization method, J. Comput. Phys., Volume 281 (2015), pp. 96-115 | DOI | MR | Zbl
[39] Approximation of the laplace and stokes operators with Dirichlet boundary conditions through volume penalization: A spectral viewpoint, Numer. Math., Volume 128 (2014), pp. 301-338 | DOI | MR | Zbl
[40] Improving accuracy of volume penalised fluid-solid interactions, J. Comput. Phys., Volume 430 (2021), 110043 | DOI | MR | Zbl
[41] FluSI: A novel parallel simulation tool for flapping insect flight using a Fourier method with volume penalization, SIAM J. Sci. Comput., Volume 38 (2016) no. 5, p. S3-S24 | DOI | MR | Zbl
[42] A volume penalization method for incompressible flows and scalar advection-diffusion with moving obstacles, J. Comput. Phys., Volume 231 (2012), pp. 4365-4383 | DOI | MR | Zbl
[43] Volume penalization for inhomogeneous Neumann boundary conditions modeling scalar flux in complicated geometry, J. Comput. Phys., Volume 390 (2019), pp. 452-469 | DOI | MR | Zbl
[44] Spectral Methods in Fluid Dynamics, Springer, Berlin, Heidelberg, 1986
[45] Numerical simulation of the transient flow behaviour in chemical reactors using a penalisation method, Comput. Fluids, Volume 34 (2005), pp. 1223-1238 | DOI | Zbl
[46] Bumblebee flight in heavy turbulence, Phys. Rev. Lett., Volume 116 (2016), 028103 | DOI
[47] Impact of turbulence on flying insects in tethered and free flight: High-resolution numerical experiments, Phys. Rev. Fluids, Volume 4 (2019), 013103 | DOI
[48] An experimental data-driven mass-spring model of flexible Calliphora wings, Bioinspir. Biomim., Volume 17 (2022) no. 2, 026003
[49] A wavelet-adaptive method for multiscale simulation of turbulent flows in flying insects, Commun. Comput. Phys., Volume 30 (2021), pp. 1118-1149 | MR | Zbl
[50] Biorthogonal bases of compactly supported wavelets, Commun. Pure Appl. Math., Volume 45 (1992), pp. 485-560 | DOI | MR | Zbl
[51] Flexural stiffness in insect wings I. Scaling and the influence of wing venation, J. Exp. Biol., Volume 206 (2003), pp. 2979-2987 | DOI
[52] Aerodynamic effects of flexibility in flapping wings, J. R. Soc. Interface, Volume 7 (2009) no. 44, pp. 485-497 | DOI
[53] Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending, J. Exp. Biol., Volume 206 (2003), pp. 2989-2997 | DOI
[54] Fluid–structure interaction using volume penalization and mass-spring models with application to flapping bumblebee flight, Cartesian CFD Methods for Complex Applications (R. Deiterding; M. O. Domingues; K. Schneider, eds.) (SEMA SIMAI Springer Series), Volume 3, Springer, Cham, 2021, pp. 19-35 | DOI | MR | Zbl
[55] Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Comput. Methods Appl. Mech. Eng., Volume 196 (2007), pp. 1278-1293 | DOI | MR | Zbl
[56] Novel flight style and light wings boost flight performance of tiny beetles, Nature, Volume 602 (2022), pp. 96-100 | DOI
[57] Optimal configuration of a two-dimensional bristled wing, J. Fluid Mech., Volume 888 (2020), A23 | MR | Zbl
[58] Aerodynamic performance of a bristled wing of a very small insect, Exp. Fluids, Volume 61 (2020), 194 | DOI
[59] Flight efficiency is a key to diverse wing morphologies in small insects, J. R. Soc. Interface, Volume 18 (2021) no. 183, 20210518 | DOI
[60] Foraging in an unsteady world: bumblebee flight performance in field-realistic turbulence, Interface Focus, Volume 7 (2017) no. 1, 20160086 | DOI
[61] Bumblebee minimize control challenges by combining active and passive modes in unsteady winds, Sci. Rep., Volume 6 (2016), 35043 | DOI
[62] Aeromechanics of passive rotation in flapping flight, J. Fluid Mech., Volume 660 (2010), pp. 197-220 | DOI | MR | Zbl
[63] The dynamics of passive feathering rotation in hovering flight of bumblebees, J. Fluids Struct., Volume 91 (2019), 102628 | DOI
[64] Influence of wing flexibility on the aerodynamic performance of a tethered flapping bumblebee, Theor. Appl. Mech. Lett., Volume 10 (2020) no. 6, pp. 382-389 | DOI
[65] Local deformation and stiffness distribution in fly wings, Biol. Open, Volume 8 (2019) no. 1, bio038299 | DOI
[66] Turbulence generated by fractal Trees - PIV measurements and comparison with numerical data, Ph. D. Thesis, echnische Universität Berlin (2017)
[67] The mechanics of flight in the Hawkmoth Manduca sexta II. Aerodynamic consequences of kinematic and morphological variation, J. Exp. Biol., Volume 200 (1997), pp. 2723-2745 | DOI
[68] Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthonormal wavelet basis, Phys. Fluids, Volume 11 (1999), pp. 2187-2201 | DOI | Zbl
[69] Coherent vortex simulation (CVS), a semi-deterministic turbulence model using wavelets, Flow Turbul. Combust., Volume 66 (2001), pp. 393-426 | DOI | MR | Zbl
[70] Materials, structure, and dynamics of insect wings as bioinspiration for MAVs, Encyclopedia of Aerospace Engineering, Volume 7, John Wiley & Sons, Ltd, Chichester, West Sussex, UK, 2010 (Part 34) | DOI
[71] Control of a fly-mimicking flyer in complex flow using deep reinforcement learning, 2021 arXiv:211103454 (arXiv preprint)
Cited by Sources:
Comments - Policy