Comptes Rendus
Computational aerodynamics of insect flight using volume penalization
Comptes Rendus. Mécanique, Online first (2022), pp. 1-20.

The state-of-the-art of insect flight research using advanced computational fluid dynamics techniques on supercomputers is reviewed, focusing mostly on the work of the present authors. We present a brief historical overview, discuss numerical challenges and introduce the governing model equations. Two open source codes, one based on Fourier, the other based on wavelet representation, are succinctly presented and a mass-spring flexible wing model is described. Various illustrations of numerical simulations of flapping insects at low, intermediate and high Reynolds numbers are presented. The role of flexible wings, data-driven modeling and fluid–structure interaction issues are likewise discussed.

Received:
Accepted:
Online First:
DOI: 10.5802/crmeca.129
Keywords: Numerical simulation, Insect flight, Fluid–structure interaction, Turbulence, Flexible wings

Thomas Engels 1; Hung Truong 2; Marie Farge 3; Dmitry Kolomenskiy 4; Kai Schneider 2

1 ISTA, TU Berlin, Berlin, Germany
2 I2M-CNRS, Aix-Marseille Université, Marseille, France
3 LMD-CNRS, Ecole Normale Supérieure, Paris, France
4 CMT, Skolkovo Institute of Science and Technology, Moscow, Russia
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2022__350_S1_A10_0,
     author = {Thomas Engels and Hung Truong and Marie Farge and Dmitry Kolomenskiy and Kai Schneider},
     title = {Computational aerodynamics of insect flight using volume penalization},
     journal = {Comptes Rendus. M\'ecanique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2022},
     doi = {10.5802/crmeca.129},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Thomas Engels
AU  - Hung Truong
AU  - Marie Farge
AU  - Dmitry Kolomenskiy
AU  - Kai Schneider
TI  - Computational aerodynamics of insect flight using volume penalization
JO  - Comptes Rendus. Mécanique
PY  - 2022
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crmeca.129
LA  - en
ID  - CRMECA_2022__350_S1_A10_0
ER  - 
%0 Journal Article
%A Thomas Engels
%A Hung Truong
%A Marie Farge
%A Dmitry Kolomenskiy
%A Kai Schneider
%T Computational aerodynamics of insect flight using volume penalization
%J Comptes Rendus. Mécanique
%D 2022
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crmeca.129
%G en
%F CRMECA_2022__350_S1_A10_0
Thomas Engels; Hung Truong; Marie Farge; Dmitry Kolomenskiy; Kai Schneider. Computational aerodynamics of insect flight using volume penalization. Comptes Rendus. Mécanique, Online first (2022), pp. 1-20. doi : 10.5802/crmeca.129.

[1] E. J. Marey Determination experimentale du mouvement des ailes des insectes pendant le vol, C. R. Acad. Sci. Paris, Volume 67 (1868), pp. 1341-1345

[2] T. Weis-Fogh Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production, J. Exp. Biol., Volume 59 (1973), pp. 169-230 | DOI

[3] M. Lighthill On the Weis-Fogh mechanism of lift generation, J. Fluid Mech., Volume 60 (1973) no. 1, pp. 1-17 | DOI | Zbl

[4] T. Maxworthy Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’, J. Fluid Mech., Volume 93 (1979) no. 1, pp. 47-63 | DOI

[5] D. Kolomenskiy; H. K. Moffatt; M. Farge; K. Schneider The Lighthill–Weis-Fogh clap-fling-sweep mechanism revisited, J. Fluid Mech., Volume 676 (2011), pp. 572-606 | DOI | MR | Zbl

[6] S. J. Lighthill Mathematical Biofluiddynamics, SIAM, Philadelphia, PA, 1975 | DOI

[7] C. S. Peskin Numerical analysis of blood flow in the heart, J. Comput. Phys., Volume 25 (1977), pp. 220-252 | DOI | MR | Zbl

[8] C. S. Peskin Flow patterns around heart valves: a digital computer method for solving the equations of motion, Ph. D. Thesis, The Albert Einstein College of Medicine, New York, NY (1972)

[9] T. Maxworthy The fluid dynamics of insect flight, Annu. Rev. Fluid Mech., Volume 13 (1981) no. 1, pp. 329-350 | DOI

[10] S. P. Sane The aerodynamics of insect flight, J. Exp. Biol., Volume 206 (2003), pp. 4191-4208 | DOI

[11] Z. J. Wang Dissecting insect flight, Annu. Rev. Fluid Mech., Volume 37 (2005), pp. 183-210 | DOI | MR | Zbl

[12] Z. J. Wang Insect flight: from Newton’s law to neurons, Annu. Rev. Condens. Matter Phys., Volume 7 (2016), pp. 281-300 | DOI

[13] T. A. Ward; M. Rezadad; C. J. Fearday; R. Viyapuri A review of biomimetic air vehicle research: 1984–2014, Int. J. Micro Air Veh., Volume 7 (2015) no. 3, pp. 375-394 | DOI

[14] M. Maeda; H. Liu Ground effect in fruit fly hovering: A three-dimensional computational study, J. Biomech. Sci. Eng., Volume 8 (2013), pp. 344-355 | DOI

[15] R. Dudley; C. P. Ellington Mechanics of forward flight in bumblebees I. Kinematics and morphology, J. Exp. Biol., Volume 148 (1990), pp. 19-52 | DOI

[16] H. Liu Integrated modeling of insect flight: From morphology, kinematics to aerodynamics, J. Comput. Phys., Volume 228 (2009), pp. 439-459 | DOI | MR | Zbl

[17] H. Liu; K. Kawachi A numerical study of insect flight, J. Comput. Phys., Volume 146 (1998), pp. 124-156 | DOI | Zbl

[18] R. Ramamurti; W. C. Sandberg A three-dimensional computational study of the aerodynamic mechanisms of insect flight, J. Exp. Biol., Volume 205 (2002), pp. 1507-1518 | DOI

[19] R. Ramamurti; W. Sandberg A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering, J. Exp. Biol., Volume 210 (2009), pp. 881-896 | DOI

[20] M. H. Dickinson; F.-O. Lehmann; S. P. Sane Wing rotation and the aerodynamic basis of insect flight, Science, Volume 284 (1999), pp. 1954-1960 | DOI

[21] C. S. Peskin The immersed boundary method, Acta Numer., Volume 11 (2002), pp. 479-517 | DOI | MR | Zbl

[22] P. Angot; C. Bruneau; P. Fabrie A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., Volume 81 (1999), pp. 497-520 | DOI | MR | Zbl

[23] R. Mittal; G. Iaccarino Immersed boundary methods, Annu. Rev. Fluid Mech., Volume 37 (2005), pp. 239-261 | DOI | MR | Zbl

[24] K. Schneider Immersed boundary methods for numerical simulation of confined fluid and plasma turbulence in complex geometries: a review., J. Plasma Phys., Volume 81 (2015), 435810601 | DOI

[25] K. Suzuki; K. Minami; T. Inamuro Lift and thrust generation by a butterfly-like flapping wing-body model: immersed boundary-lattice Boltzmann simulations, J. Fluid Mech., Volume 767 (2015), pp. 659-695 | DOI | MR

[26] N. Yokoyama; K. Senda; M. Iima; N. Hirai Aerodynamic forces and vortical structures in flapping butterfly’s forward flight, Phys. Fluids, Volume 25 (2013), 021902 | DOI

[27] L. Zheng; T. L. Hedrick; R. Mittal Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies, PLoS ONE, Volume 8 (2013) no. 1, e53060 | DOI

[28] J. Young; S. M. Walker; R. J. Bomphrey; G. K. Taylor; A. L. R. Thomas Details of insect wing design and deformation enhance aerodynamic function and flight efficiency, Science, Volume 325 (2009) no. 5947, pp. 1549-1552 | DOI

[29] D. Kolomenskiy; T. Engels; K. Schneider Numerical modelling of flexible heaving foils, J. Aero Aqua Bio-Mech., Volume 3 (2013), pp. 22-28 | DOI

[30] L. A. Miller; C. S. Peskin Flexible clap and fling in tiny insect flight, J. Exp. Biol., Volume 212 (2009), pp. 3076-3090 | DOI

[31] T. Nakata; H. Liu A fluid-structure interaction model of insect flight with flexible wings, J. Comput. Phys., Volume 231 (2012) no. 4, pp. 1822-1847 | DOI | MR | Zbl

[32] T. Nakata; H. Liu Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach, Proc. R. Soc. B, Volume 279 (2012) no. 1729, pp. 722-731 | DOI

[33] H. Truong; T. Engels; D. Kolomenskiy; K. Schneider A mass-spring fluid-structure interaction solver: application to flexible revolving wings, Comput. Fluids, Volume 200 (2020), 104426 | DOI | MR | Zbl

[34] E. Arquis; J.-P. Caltagirone Sur les conditions hydrodynamiques au voisinage d’une interface milieu fluide milieu poreux: application à la convection naturelle, C. R. Acad. Sci. Paris, Sér. II, Volume 299 (1984), pp. 1-4

[35] D. Kolomenskiy; K. Schneider A Fourier spectral method for the Navier–Stokes equations with volume penalization for moving solid obstacles, J. Comput. Phys., Volume 228 (2009), pp. 5687-5709 | DOI | MR | Zbl

[36] T. Engels; D. Kolomenskiy; K. Schneider; J. Sesterhenn Two-dimensional simulation of the fluttering instability using a pseudospectral method with volume penalization, Comput. Struct., Volume 122 (2012), pp. 101-112 | DOI

[37] G. Carbou; P. Fabrie Boundary layer for a penalization method for viscous incompressible flow, Adv. Differ. Equ., Volume 8 (2003), pp. 1453-2480 | MR | Zbl

[38] T. Engels; D. Kolomenskiy; K. Schneider; J. Sesterhenn Numerical simulation of fluid-structure interaction with the volume penalization method, J. Comput. Phys., Volume 281 (2015), pp. 96-115 | DOI | MR | Zbl

[39] R. Nguyen van yen; D. Kolomenskiy; K. Schneider Approximation of the laplace and stokes operators with Dirichlet boundary conditions through volume penalization: A spectral viewpoint, Numer. Math., Volume 128 (2014), pp. 301-338 | DOI | MR | Zbl

[40] E. W. Hester; G. M. Vasil; K. J. Burns Improving accuracy of volume penalised fluid-solid interactions, J. Comput. Phys., Volume 430 (2021), 110043 | DOI | MR | Zbl

[41] T. Engels; D. Kolomenskiy; K. Schneider; J. Sesterhenn FluSI: A novel parallel simulation tool for flapping insect flight using a Fourier method with volume penalization, SIAM J. Sci. Comput., Volume 38 (2016) no. 5, p. S3-S24 | DOI | MR | Zbl

[42] B. Kadoch; D. Kolomenskiy; P. Angot; K. Schneider A volume penalization method for incompressible flows and scalar advection-diffusion with moving obstacles, J. Comput. Phys., Volume 231 (2012), pp. 4365-4383 | DOI | MR | Zbl

[43] T. Sakurai; K. Yoshimatsu; N. Okamoto; K. Schneider Volume penalization for inhomogeneous Neumann boundary conditions modeling scalar flux in complicated geometry, J. Comput. Phys., Volume 390 (2019), pp. 452-469 | DOI | MR | Zbl

[44] C. Canuto; M. Y. Hussaini; A. Quarteroni; T. Zang Spectral Methods in Fluid Dynamics, Springer, Berlin, Heidelberg, 1986

[45] K. Schneider Numerical simulation of the transient flow behaviour in chemical reactors using a penalisation method, Comput. Fluids, Volume 34 (2005), pp. 1223-1238 | DOI | Zbl

[46] T. Engels; D. Kolomenskiy; K. Schneider; F.-O. Lehmann; J. Sesterhenn Bumblebee flight in heavy turbulence, Phys. Rev. Lett., Volume 116 (2016), 028103 | DOI

[47] T. Engels; D. Kolomenskiy; K. Schneider; M. Farge; F.-O. Lehmann; J. Sesterhenn Impact of turbulence on flying insects in tethered and free flight: High-resolution numerical experiments, Phys. Rev. Fluids, Volume 4 (2019), 013103 | DOI

[48] H. Truong; T. Engels; H. Wehmann; D. Kolomenskiy; F.-O. Lehmann; K. Schneider An experimental data-driven mass-spring model of flexible Calliphora wings, Bioinspir. Biomim., Volume 17 (2022) no. 2, 026003

[49] T. Engels; K. Schneider; J. Reiss; M. Farge A wavelet-adaptive method for multiscale simulation of turbulent flows in flying insects, Commun. Comput. Phys., Volume 30 (2021), pp. 1118-1149 | MR | Zbl

[50] A. Cohen; I. Daubechies; J. C. Feauveau Biorthogonal bases of compactly supported wavelets, Commun. Pure Appl. Math., Volume 45 (1992), pp. 485-560 | DOI | MR | Zbl

[51] S. A. Combes; T. L. Daniel Flexural stiffness in insect wings I. Scaling and the influence of wing venation, J. Exp. Biol., Volume 206 (2003), pp. 2979-2987 | DOI

[52] L. Zhao; Q. Huang; X. Deng; S. P. Sane Aerodynamic effects of flexibility in flapping wings, J. R. Soc. Interface, Volume 7 (2009) no. 44, pp. 485-497 | DOI

[53] S. A. Combes; T. L. Daniel Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending, J. Exp. Biol., Volume 206 (2003), pp. 2989-2997 | DOI

[54] H. Truong; T. Engels; D. Kolomenskiy; K. Schneider Fluid–structure interaction using volume penalization and mass-spring models with application to flapping bumblebee flight, Cartesian CFD Methods for Complex Applications (R. Deiterding; M. O. Domingues; K. Schneider, eds.) (SEMA SIMAI Springer Series), Volume 3, Springer, Cham, 2021, pp. 19-35 | DOI | MR | Zbl

[55] C. Foerster; W. Wall; E. Ramm Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Comput. Methods Appl. Mech. Eng., Volume 196 (2007), pp. 1278-1293 | DOI | MR | Zbl

[56] S. E. Farisenkov; D. Kolomenskiy; P. N. Petrov; T. Engels; N. A. Lapina; F.-O. Lehmann; R. Onishi; H. Liu; A. A. Polilov Novel flight style and light wings boost flight performance of tiny beetles, Nature, Volume 602 (2022), pp. 96-100 | DOI

[57] S. H. Lee; M. Lee; D. Kim Optimal configuration of a two-dimensional bristled wing, J. Fluid Mech., Volume 888 (2020), A23 | MR | Zbl

[58] D. Kolomenskiy; S. Farisenkov; T. Engels; N. Lapina; P. Petrov; F.-O. Lehmann; R. Onishi; H. Liu; A. Polilov Aerodynamic performance of a bristled wing of a very small insect, Exp. Fluids, Volume 61 (2020), 194 | DOI

[59] T. Engels; D. Kolomenskiy; F.-O. Lehmann Flight efficiency is a key to diverse wing morphologies in small insects, J. R. Soc. Interface, Volume 18 (2021) no. 183, 20210518 | DOI

[60] J. D. Crall; J. J. Chang; R. L. Oppenheimer; S. A. Combes Foraging in an unsteady world: bumblebee flight performance in field-realistic turbulence, Interface Focus, Volume 7 (2017) no. 1, 20160086 | DOI

[61] S. Ravi; D. Kolomenskiy; T. Engels; K. Schneider; C. Wang; J. Sesterhenn; H. Liu Bumblebee minimize control challenges by combining active and passive modes in unsteady winds, Sci. Rep., Volume 6 (2016), 35043 | DOI

[62] J. P. Whitney; R. J. Wood Aeromechanics of passive rotation in flapping flight, J. Fluid Mech., Volume 660 (2010), pp. 197-220 | DOI | MR | Zbl

[63] D. Kolomenskiy; S. Ravi; R. Xu; K. Ueyama; T. Jakobi; T. Engels; T. Nakata; J. Sesterhenn; K. Schneider; R. Onishi; H. Liu The dynamics of passive feathering rotation in hovering flight of bumblebees, J. Fluids Struct., Volume 91 (2019), 102628 | DOI

[64] H. Truong; T. Engels; D. Kolomenskiy; K. Schneider Influence of wing flexibility on the aerodynamic performance of a tethered flapping bumblebee, Theor. Appl. Mech. Lett., Volume 10 (2020) no. 6, pp. 382-389 | DOI

[65] H.-N. Wehmann; L. Heepe; S. N. Gorb; T. Engels; F.-O. Lehmann Local deformation and stiffness distribution in fly wings, Biol. Open, Volume 8 (2019) no. 1, bio038299 | DOI

[66] M. Dreissigacker Turbulence generated by fractal Trees - PIV measurements and comparison with numerical data, Ph. D. Thesis, echnische Universität Berlin (2017)

[67] A. P. Willmott; C. P. Ellington The mechanics of flight in the Hawkmoth Manduca sexta II. Aerodynamic consequences of kinematic and morphological variation, J. Exp. Biol., Volume 200 (1997), pp. 2723-2745 | DOI

[68] M. Farge; K. Schneider; N. Kevlahan Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthonormal wavelet basis, Phys. Fluids, Volume 11 (1999), pp. 2187-2201 | DOI | Zbl

[69] M. Farge; K. Schneider Coherent vortex simulation (CVS), a semi-deterministic turbulence model using wavelets, Flow Turbul. Combust., Volume 66 (2001), pp. 393-426 | DOI | MR | Zbl

[70] S. A. Combes Materials, structure, and dynamics of insect wings as bioinspiration for MAVs, Encyclopedia of Aerospace Engineering, Volume 7, John Wiley & Sons, Ltd, Chichester, West Sussex, UK, 2010 (Part 34) | DOI

[71] S. Hong; S. Kim; D. You Control of a fly-mimicking flyer in complex flow using deep reinforcement learning, 2021 arXiv:211103454 (arXiv preprint)

Cited by Sources:

Comments - Policy