Comptes Rendus
Stratified radiative transfer for multidimensional fluids
Comptes Rendus. Mécanique, Online first (2022), pp. 1-15.

New mathematical and numerical results are given for the coupling of the temperature equation of a fluid with radiative transfer: existence and uniqueness and a convergent monotone numerical scheme. The technique is shown to be feasible for studying the temperature of the Lake Leman heated by the sun and for studying the effects of greenhouse gases on earth’s atmosphere.

Un nouveau résultat d’existence et d’unicité est donné pour le système formé par les équations du transfert radiatif couplées à l’équation de la température d’un fluide. Une méthode numérique convergente et monotone en découle. La technique est appliquée au calcul de la température du lac Leman ainsi qu’à la température de l’atmosphère terrestre pour étudier l’influence des gaz à effet de serre.

Online First:
DOI: 10.5802/crmeca.136
Keywords: Radiative transfer, Navier–Stokes equations, Integral equations, Numerical method, Convergence, Climate
Mot clés : Transfert radiatif, Équations de Navier–Stokes, Équations intégrales, Méthode numérique, Convergence, Climat

François Golse 1; Olivier Pironneau 2

1 CMLS, Ecole polytechnique, 91128 Palaiseau Cedex, France
2 LJLL, Boite 187, Sorbonne Université, 75005 Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Fran\c{c}ois Golse and Olivier Pironneau},
     title = {Stratified radiative transfer for multidimensional fluids},
     journal = {Comptes Rendus. M\'ecanique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2022},
     doi = {10.5802/crmeca.136},
     language = {en},
     note = {Online first},
AU  - François Golse
AU  - Olivier Pironneau
TI  - Stratified radiative transfer for multidimensional fluids
JO  - Comptes Rendus. Mécanique
PY  - 2022
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crmeca.136
LA  - en
ID  - CRMECA_2022__350_S1_A12_0
ER  - 
%0 Journal Article
%A François Golse
%A Olivier Pironneau
%T Stratified radiative transfer for multidimensional fluids
%J Comptes Rendus. Mécanique
%D 2022
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crmeca.136
%G en
%F CRMECA_2022__350_S1_A12_0
François Golse; Olivier Pironneau. Stratified radiative transfer for multidimensional fluids. Comptes Rendus. Mécanique, Online first (2022), pp. 1-15. doi : 10.5802/crmeca.136.

[1] E. Cancès; M. Defranceschi; W. Kutzelnigg; C. Le Bris; Y. Maday Computational quantum chemistry: A primer, Special Volume, Computational Chemistry (Handbook of Numerical Analysis), Volume 10, Elsevier, Amsterdam, 2003, pp. 3-270 | DOI | Zbl

[2] J.-L. Lions; R. Temam; S. Wang Geostrophic asymptotics of the primitive equations of the atmosphere, Topol. Methods Nonlinear Anal., Volume 4 (1994) no. 2, pp. 253-287 | DOI | MR | Zbl

[3] P. Azérad; F. Guillén Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics, SIAM J. Math. Anal., Volume 33 (2001), pp. 847-859 | DOI | MR | Zbl

[4] Q. L. C. Cao; E. S. Titi On the well-posedness of reduced 3D primitive geostrophic adjustment model with weak dissipation, J. Math. Fluid Mech., Volume 22 (2020), 32 | MR | Zbl

[5] M. Castro Díaz; J. López-García; C. Parés High order exactly well-balanced numerical methods for shallow water systems, J. Comput. Phys., Volume 246 (2013), pp. 242-264 | DOI | MR | Zbl

[6] T. Dubos; S. Dubey; M. Tort; R. Mittal; Y. Meurdesoif; F. Hourdin DYNAMICO-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility, Geosci. Model Dev., Volume 8 (2015), pp. 3131-3150 | DOI

[7] C. Eldred; T. Dubos; E. Kritsikis A quasi-Hamiltonian discretization of the thermal shallow water equations, J. Comput. Phys., Volume 379 (2019), pp. 1-31 | DOI | MR | Zbl

[8] S. Chandrasekhar Radiative Transfer, Clrarendon Press, Oxford, 1950

[9] R. Dautray; J. Lions Mathematical Analysis and Numerical Methods for Science and Technology, 3, Springer Verlag, New York, 2000

[10] J. Amaya; O. Cabrit; D. Poitou; B. Cuenot; M. ElHafi Unsteady coupling of Navier–Stokes and Radiative Heat Transfer solvers applied to an anisothermal multicomponent turbulent channel flow, J. Quant. Spectrosc. Radiat. Transf., Volume 111 (2010) no. 2, pp. 295-301 | DOI

[11] S. Zeng; S. Pian; M. Su; Z. Wang; M. Wu; X. Liu; M. Chen; Y. Xiang; J. Wu; M. Zhang; Q. Cen; Y. Tang; X. Zhou; Z. Huang; R. Wang; A. Tunuhe; X. Sun; Z. Xia; M. Tian; M. Chen; X. Ma; L. Yang; J. Zhou; H. Zhou; Q. Yang; X. Li; Y. Ma; G. Tao Hierarchical-morphology metafabric for scalable passive daytime radiative cooling, Science, Volume 373 (2021), pp. 692-696 | DOI

[12] R. Goody; Y. Yung Atmospheric Radiation, Oxford University Press, Oxford, UK, 1961

[13] C. F. Bohren Fundamentals of Atmospheric Radiation, Cambridge University Press, Cambridge, UK, 2006 | DOI

[14] W. Zdunkowski; T. Trautmann Radiation in the Atmosphere, Cambridge University Press, Cambridge, UK, 2003

[15] Y. Fouquart Radiative transfer in climate models, NATO ASI Series (M. E. Schlesinger, ed.), NATO, New York, 1988

[16] J.-J. Morette Radiation and cloud radiative properties in the european centre for medium range weather forecasts forecasting system, J. Geophys. Res., Volume 91 (1991) no. D5, pp. 9121-9132 | DOI

[17] A. Fowler Mathematical Geoscience, Springer Verlag, New York, 2011 | MR

[18] G. Pomraning The Equations of Radiation Hydrodynamics, Pergamon Press, New York, 1973

[19] P.-L. Lions Mathematical Topics in Fluid Dynamics, Vol. 1, Incompressible Models, Oxford University Press, Oxford, UK, 1996

[20] A. Attaoui Existence of solutions for a nonlinear Boussinesq–Stefan system, Adv. Differ. Equ., Volume 14 (2009) no. 9, pp. 985-1018 | MR | Zbl

[21] O. Pironneau A fast and accurate numerical method for radiative transfer in the atmosphere, C. R. Math., Volume 359 (2021) no. 9, pp. 1179-1189 | MR

[22] C. Bardos; O. Pironneau The radiative transfer model for the greenhouse effect, SeMA J., Volume 79 (2022) no. 3, pp. 489-525 (Special Issue ICIAM 2019) | DOI | MR | Zbl

[23] F. Golse The milne problem for the radiative transfer equations (with frequency dependence), Trans. Amer. Math. Soc., Volume 303 (1987), pp. 125-143 | DOI | MR | Zbl

[24] B. Mercier Application of accretive operators theory to the radiative transfer equations, SIAM J. Math. Anal., Volume 18 (1987) no. 2, pp. 393-408 | DOI | MR | Zbl

[25] F. Golse; O. Pironneau Radiative Transfer in a Fluid, RACSAM, Springer, 2022 (Volume dedicated to I. Diaz) | DOI

[26] F. Hecht New developments in FreeFem++ (, J. Numer. Math., Volume 20 (2012), pp. 251-265 | Zbl

[27] C. Bardos; F. Golse; B. Perthame; R. Sentis The nonaccretive radiative transfer equations: existence of solutions and Rosseland approximation, J. Funct. Anal., Volume 77 (1988), pp. 434-460 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy