New mathematical and numerical results are given for the coupling of the temperature equation of a fluid with radiative transfer: existence and uniqueness and a convergent monotone numerical scheme. The technique is shown to be feasible for studying the temperature of the Lake Leman heated by the sun and for studying the effects of greenhouse gases on earth’s atmosphere.
Un nouveau résultat d’existence et d’unicité est donné pour le système formé par les équations du transfert radiatif couplées à l’équation de la température d’un fluide. Une méthode numérique convergente et monotone en découle. La technique est appliquée au calcul de la température du lac Leman ainsi qu’à la température de l’atmosphère terrestre pour étudier l’influence des gaz à effet de serre.
Revised:
Accepted:
Online First:
Mot clés : Transfert radiatif, Équations de Navier–Stokes, Équations intégrales, Méthode numérique, Convergence, Climat
François Golse 1; Olivier Pironneau 2
@article{CRMECA_2022__350_S1_A12_0, author = {Fran\c{c}ois Golse and Olivier Pironneau}, title = {Stratified radiative transfer for multidimensional fluids}, journal = {Comptes Rendus. M\'ecanique}, publisher = {Acad\'emie des sciences, Paris}, year = {2022}, doi = {10.5802/crmeca.136}, language = {en}, note = {Online first}, }
François Golse; Olivier Pironneau. Stratified radiative transfer for multidimensional fluids. Comptes Rendus. Mécanique, Online first (2022), pp. 1-15. doi : 10.5802/crmeca.136.
[1] Computational quantum chemistry: A primer, Special Volume, Computational Chemistry (Handbook of Numerical Analysis), Volume 10, Elsevier, Amsterdam, 2003, pp. 3-270 https://www.sciencedirect.com/science/article/pii/S1570865903100038 | DOI | Zbl
[2] Geostrophic asymptotics of the primitive equations of the atmosphere, Topol. Methods Nonlinear Anal., Volume 4 (1994) no. 2, pp. 253-287 | DOI | MR | Zbl
[3] Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics, SIAM J. Math. Anal., Volume 33 (2001), pp. 847-859 | DOI | MR | Zbl
[4] On the well-posedness of reduced 3D primitive geostrophic adjustment model with weak dissipation, J. Math. Fluid Mech., Volume 22 (2020), 32 | MR | Zbl
[5] High order exactly well-balanced numerical methods for shallow water systems, J. Comput. Phys., Volume 246 (2013), pp. 242-264 https://www.sciencedirect.com/science/article/pii/S0021999113002118 | DOI | MR | Zbl
[6] DYNAMICO-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility, Geosci. Model Dev., Volume 8 (2015), pp. 3131-3150 | DOI
[7] A quasi-Hamiltonian discretization of the thermal shallow water equations, J. Comput. Phys., Volume 379 (2019), pp. 1-31 | DOI | MR | Zbl
[8] Radiative Transfer, Clrarendon Press, Oxford, 1950
[9] Mathematical Analysis and Numerical Methods for Science and Technology, 3, Springer Verlag, New York, 2000
[10] Unsteady coupling of Navier–Stokes and Radiative Heat Transfer solvers applied to an anisothermal multicomponent turbulent channel flow, J. Quant. Spectrosc. Radiat. Transf., Volume 111 (2010) no. 2, pp. 295-301 | DOI
[11] Hierarchical-morphology metafabric for scalable passive daytime radiative cooling, Science, Volume 373 (2021), pp. 692-696 | DOI
[12] Atmospheric Radiation, Oxford University Press, Oxford, UK, 1961
[13] Fundamentals of Atmospheric Radiation, Cambridge University Press, Cambridge, UK, 2006 | DOI
[14] Radiation in the Atmosphere, Cambridge University Press, Cambridge, UK, 2003
[15] Radiative transfer in climate models, NATO ASI Series (M. E. Schlesinger, ed.), NATO, New York, 1988
[16] Radiation and cloud radiative properties in the european centre for medium range weather forecasts forecasting system, J. Geophys. Res., Volume 91 (1991) no. D5, pp. 9121-9132 | DOI
[17] Mathematical Geoscience, Springer Verlag, New York, 2011 | MR
[18] The Equations of Radiation Hydrodynamics, Pergamon Press, New York, 1973
[19] Mathematical Topics in Fluid Dynamics, Vol. 1, Incompressible Models, Oxford University Press, Oxford, UK, 1996
[20] Existence of solutions for a nonlinear Boussinesq–Stefan system, Adv. Differ. Equ., Volume 14 (2009) no. 9, pp. 985-1018 | MR | Zbl
[21] A fast and accurate numerical method for radiative transfer in the atmosphere, C. R. Math., Volume 359 (2021) no. 9, pp. 1179-1189 | MR
[22] The radiative transfer model for the greenhouse effect, SeMA J., Volume 79 (2022) no. 3, pp. 489-525 (Special Issue ICIAM 2019) | DOI | MR | Zbl
[23] The milne problem for the radiative transfer equations (with frequency dependence), Trans. Amer. Math. Soc., Volume 303 (1987), pp. 125-143 | DOI | MR | Zbl
[24] Application of accretive operators theory to the radiative transfer equations, SIAM J. Math. Anal., Volume 18 (1987) no. 2, pp. 393-408 | DOI | MR | Zbl
[25] Radiative Transfer in a Fluid, RACSAM, Springer, 2022 (Volume dedicated to I. Diaz) | DOI
[26] New developments in FreeFem++ (www.freefem.org), J. Numer. Math., Volume 20 (2012), pp. 251-265 | Zbl
[27] The nonaccretive radiative transfer equations: existence of solutions and Rosseland approximation, J. Funct. Anal., Volume 77 (1988), pp. 434-460 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy