Comptes Rendus
Aqueous foams in microgravity, measuring bubble sizes
Comptes Rendus. Mécanique, Volume 351 (2023) no. S2, pp. 139-161.

The paper describes a study of wet foams in microgravity whose bubble size distribution evolves due to diffusive gas exchange. We focus on the comparison between the size of bubbles determined from images of the foam surface and the size of bubbles in the bulk foam, determined from Diffuse Transmission Spectroscopy (DTS). Extracting the bubble size distribution from images of a foam surface is difficult so we have used three different procedures: manual analysis, automatic analysis with a customized Python script and machine learning analysis. Once various pitfalls were identified and taken into account, all the three procedures yield identical results within error bars. DTS only allows the determination of an average bubble radius which is proportional to the photon transport mean free path * . The relation between the measured diffuse transmitted light intensity and * previously derived for slab-shaped samples of infinite lateral extent does not apply to the cuboid geometry of the cells used in the microgravity experiment. A new more general expression of the diffuse intensity transmitted with specific optical boundary conditions has been derived and applied to determine the average bubble radius. The temporal evolution of the average bubble radii deduced from DTS and of the same average radii of the bubbles measured at the sample surface is the same (to a factor probably close to one) throughout the coarsening. Finally, ground experiments were performed to compare bubble size distributions in a bulk wet foam and at its surface at times so short that diffusive gas exchange is insignificant. They were found to be similar, confirming that bubbles seen at the surface are representative of the bulk foam bubbles.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crmeca.153
Mots clés : Aqueous foams, Microgravity, Diffuse Transmission Spectroscopy, Image analysis, Bubble size distribution
Marina Pasquet 1 ; Nicolo Galvani 2, 3 ; Olivier Pitois 3 ; Sylvie Cohen-Addad 2, 4 ; Reinhard Höhler 2, 4 ; Anthony T. Chieco 5 ; Sam Dillavou 5 ; Jesse M. Hanlan 5 ; Douglas J. Durian 5 ; Emmanuelle Rio 6 ; Anniina Salonen 6 ; Dominique Langevin 6

1 Department of Chemistry, University of California, Berkeley, CA, USA
2 Sorbonne Université, Institut des NanoSciences de Paris, Paris, France
3 Université Gustave Eiffel, Laboratoire Navier, Marne-la-Vallée, France
4 Université Gustave Eiffel, Marne-la-Vallée, France
5 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
6 Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2023__351_S2_139_0,
     author = {Marina Pasquet and Nicolo Galvani and Olivier Pitois and Sylvie Cohen-Addad and Reinhard H\"ohler and Anthony T. Chieco and Sam Dillavou and Jesse M. Hanlan and Douglas J. Durian and Emmanuelle Rio and Anniina Salonen and Dominique Langevin},
     title = {Aqueous foams in microgravity, measuring bubble sizes},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {139--161},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     number = {S2},
     year = {2023},
     doi = {10.5802/crmeca.153},
     language = {en},
}
TY  - JOUR
AU  - Marina Pasquet
AU  - Nicolo Galvani
AU  - Olivier Pitois
AU  - Sylvie Cohen-Addad
AU  - Reinhard Höhler
AU  - Anthony T. Chieco
AU  - Sam Dillavou
AU  - Jesse M. Hanlan
AU  - Douglas J. Durian
AU  - Emmanuelle Rio
AU  - Anniina Salonen
AU  - Dominique Langevin
TI  - Aqueous foams in microgravity, measuring bubble sizes
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 139
EP  - 161
VL  - 351
IS  - S2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.153
LA  - en
ID  - CRMECA_2023__351_S2_139_0
ER  - 
%0 Journal Article
%A Marina Pasquet
%A Nicolo Galvani
%A Olivier Pitois
%A Sylvie Cohen-Addad
%A Reinhard Höhler
%A Anthony T. Chieco
%A Sam Dillavou
%A Jesse M. Hanlan
%A Douglas J. Durian
%A Emmanuelle Rio
%A Anniina Salonen
%A Dominique Langevin
%T Aqueous foams in microgravity, measuring bubble sizes
%J Comptes Rendus. Mécanique
%D 2023
%P 139-161
%V 351
%N S2
%I Académie des sciences, Paris
%R 10.5802/crmeca.153
%G en
%F CRMECA_2023__351_S2_139_0
Marina Pasquet; Nicolo Galvani; Olivier Pitois; Sylvie Cohen-Addad; Reinhard Höhler; Anthony T. Chieco; Sam Dillavou; Jesse M. Hanlan; Douglas J. Durian; Emmanuelle Rio; Anniina Salonen; Dominique Langevin. Aqueous foams in microgravity, measuring bubble sizes. Comptes Rendus. Mécanique, Volume 351 (2023) no. S2, pp. 139-161. doi : 10.5802/crmeca.153. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.153/

[1] Isabelle Cantat; Sylvie Cohen-Addad; Florence Elias; François Graner; Reinhard Höhler; Olivier Pitois; Florence Rouyer; Arnaud Saint-Jalmes Foams: Structure and Dynamics, Oxford University Press, 2013 | DOI

[2] L. J. Gibson; M. F. Ashby Cellular solids, Cambridge University Press, 1997 | DOI

[3] W. W. Mullins The statistical self‐similarity hypothesis in grain growth and particle coarsening, J. Appl. Phys., Volume 59 (1986) no. 4, pp. 1341-1349 | DOI

[4] P. Taylor Ostwald ripening in emulsions, Adv. Colloid Interface Sci., Volume 75 (1998) no. 2, pp. 107-163 | DOI

[5] P. Born; M. Braibanti; L. Cristofolini; Sylvie Cohen-Addad; D. J. Durian; S. U. Egelhaaf; M. A. Escobedo-Sánchez; Reinhard Höhler; T. D. Karapantsios; D. Langevin; L. Liggieri; M. Pasquet; E. Rio; A. Salonen; M. Schröter; M. Sperl; R. Sütterlin; A. B. Zuccolotto-Bernez Soft matter dynamics: A versatile microgravity platform to study dynamics in soft matter, Rev. Sci. Instrum., Volume 92 (2021) no. 12, 124503 | DOI

[6] Yingjie Wang; Stephen J. Neethling The relationship between the surface and internal structure of dry foam, Colloids Surf. A Physicochem. Eng. Asp., Volume 339 (2009) no. 1, pp. 73-81 | DOI

[7] Hsing C. Cheng; Robert Lemlich Errors in the measurement of bubble-size distribution in foam, Ind. Eng. Chem. Fundamen., Volume 22 (1983) no. 1, pp. 105-109 | DOI

[8] D. J. Durian; D. A. Weitz; D. J. Pine Multiple Light-Scattering Probes of Foam Structure and Dynamics, Science, Volume 252 (1991) no. 5006, pp. 686-688 | DOI

[9] T. Gaillard; M. Roché; C. Honorez; M. Jumeau; A. Balan; C. Jedrzejczyk; W. Drenckhan Controlled foam generation using cyclic diphasic flows through a constriction, Int. J. Multiphase Flow, Volume 96 (2017), pp. 173-187 | DOI

[10] Sylvie Cohen-Addad; Reinhard Höhler; Yacine Khidas Origin of the slow linear viscoelastic response of aqueous foams, Phys. Rev. Lett., Volume 93 (2004) no. 2, 028302 | DOI

[11] A. van Der Net; L. Blondel; A. Saugey; W. Drenckhan Simulating and interpretating images of foams with computational ray-tracing techniques, Colloids Surf. A Physicochem. Eng. Asp., Volume 309 (2007) no. 1-3, pp. 159-176 | DOI

[12] Andrew M. Kraynik; Douglas A. Reinelt; Frank van Swol Structure of random foam, Phys. Rev. Lett., Volume 93 (2004) no. 20, 208301 | DOI

[13] Kolmogorov–Smirnov test, Encyclopedia of Mathematics, 2010 (http://encyclopediaofmath.org/index.php?title=Kolmogorov%E2%80%93Smirnov_test&oldid=22660)

[14] Reinhard Höhler; Sylvie Cohen-Addad; Douglas J. Durian Multiple light scattering as a probe of foams and emulsions, Curr. Opin. Colloid Interface Sci., Volume 19 (2014) no. 3, pp. 242-252 | DOI

[15] J. H Li; A. A Lisyansky; T. D Cheung; D Livdan; A. Z Genack Transmission and Surface Intensity Profiles in Random Media, Eur. Phys. Lett., Volume 22 (1993) no. 9, pp. 675-680 | DOI

[16] P. D. Kaplan; A. D. Dinsmore; A. G. Yodh; D. J. Pine Diffuse-transmission spectroscopy: A structural probe of opaque colloidal mixtures, Phys. Rev. E, Volume 50 (1994) no. 6, pp. 4827-4835 | DOI

[17] P. A. Lemieux; M. U. Vera; D. J. Durian Diffusing-light spectroscopies beyond the diffusion limit: The role of ballistic transport and anisotropic scattering, Phys. Rev. E, Volume 57 (1998) no. 4, pp. 4498-4515 | DOI

[18] Akira Ishimaru Wave propagation and scattering in random media. Volume 1 - Single scattering and transport theory, 1, Academic Press Inc., 1978 | DOI

[19] D. J. Durian Influence of boundary reflection and refraction on diffusive photon transport, Phys. Rev. E, Volume 50 (1994) no. 2, pp. 857-866 | DOI

[20] F. Morin; R. Borrega; M. Cloitre; D. J. Durian Static and dynamic properties of highly turbid media determined by spatially resolved diffusive-wave spectroscopy, Appl. Opt., Volume 41 (2002) no. 34, pp. 7294-7299 | DOI

[21] John David Jackson Classical electrodynamics, John Wiley & Sons, 1975 | MR

[22] Hussein Hoballah Disproportionnement, Structure et Rheologie d’une Mousse Aqueuse, Ph. D. Thesis, Université de Marne la Vallée, Paris, France (1998)

[23] George H. Weiss; Josep M. Porrà; Jaume Masoliver The continuous-time random walk description of photon motion in an isotropic medium, Opt. Commun., Volume 146 (1998) no. 1, pp. 268-276 | DOI

[24] Moin U. Vera; Arnaud Saint-Jalmes; Douglas J. Durian Scattering optics of foam, Appl. Opt., Volume 40 (2001) no. 24, pp. 4210-4214 | DOI

[25] Hussein Hoballah; Reinhard Höhler; Sylvie Cohen-Addad Time Evolution of the Elastic Properties of Aqueous Foam, J. Phys. II, Volume 7 (1997) no. 9, pp. 1215-1224 | Zbl

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Aqueous foams and foam films stabilised by surfactants. Gravity-free studies

Dominique Langevin

C. R. Méca (2017)


Effect of particles and aggregated structures on the foam stability and aging

Anne-Laure Fameau; Anniina Salonen

C. R. Phys (2014)


Rheology of aqueous foams

Benjamin Dollet; Christophe Raufaste

C. R. Phys (2014)