The self-consistent (SC) theory is the most commonly used mean-field homogenization method to estimate the mechanical response behavior of polycrystals based on the knowledge of the properties and orientation distribution of constituent single-crystal grains. The original elastic SC method can be extended to thermo-elasticity by adding a stress-free strain to an elastic constitutive relation that expresses stress as a linear function of strain. With the addition of this independent term, the problem remains linear. Although the thermo-elastic self-consistent (TESC) model has important theoretical implications for the development of self-consistent homogenization of non-linear polycrystals, in this paper, we focus on TESC applications to actual thermo-elastic problems involving non-cubic (i.e. thermally anisotropic) materials. To achieve this aim, we provide a thorough description of the TESC theory, which is followed by illustrative examples involving cooling of polycrystalline non-cubic metals. The TESC model allows studying the effect of crystallographic texture and single-crystal elastic and thermal anisotropy on the effective thermo-elastic response of the aggregate and on the internal stresses that develop at the local level.
Révisé le :
Accepté le :
Première publication :
Publié le :
Carlos N. Tomé 1 ; Ricardo A. Lebensohn 1
@article{CRMECA_2020__348_10-11_877_0, author = {Carlos N. Tom\'e and Ricardo A. Lebensohn}, title = {Polycrystal thermo-elasticity revisited: theory and applications}, journal = {Comptes Rendus. M\'ecanique}, pages = {877--891}, publisher = {Acad\'emie des sciences, Paris}, volume = {348}, number = {10-11}, year = {2020}, doi = {10.5802/crmeca.18}, language = {en}, }
TY - JOUR AU - Carlos N. Tomé AU - Ricardo A. Lebensohn TI - Polycrystal thermo-elasticity revisited: theory and applications JO - Comptes Rendus. Mécanique PY - 2020 SP - 877 EP - 891 VL - 348 IS - 10-11 PB - Académie des sciences, Paris DO - 10.5802/crmeca.18 LA - en ID - CRMECA_2020__348_10-11_877_0 ER -
Carlos N. Tomé; Ricardo A. Lebensohn. Polycrystal thermo-elasticity revisited: theory and applications. Comptes Rendus. Mécanique, Volume 348 (2020) no. 10-11, pp. 877-891. doi : 10.5802/crmeca.18. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.18/
[1] The elasticity of an isotropic aggregate of anisotropic cubic crystals, J. Appl. Mech.-Trans. ASME, Volume 21 (1954), p. 236 | Zbl
[2] Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls, Z. Phys., Volume 15 (1958), p. 504 | DOI
[3] Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids, Volume 13 (1965), p. 89 | DOI | Zbl
[4] Elastic constants of polycrystals, Phys. Status Solidi (b), Volume 55 (1973), p. 831 | DOI
[5] ViscoPlastic Self-Consistent (VPSC) code (Los Alamos National Laboratory)
[6] On the overall elastic moduli of composite materials, J. Mech. Phys. Solids, Volume 17 (1969), p. 235 | DOI | Zbl
[7] Variational and related methods for the overall properties of composites, Adv. Appl. Mech., Volume 21 (1981), p. 1 | DOI | MR | Zbl
[8] Multiparticle effective field and related methods in micromechanics of random structure composites, Math. Mech. Solids, Volume 6 (2001), p. 577 | DOI | Zbl
[9] The Theory of Composites, Cambridge University Press, 2002 | Zbl
[10] Role of internal stresses in the transient of irradiation growth of Zircaloy-2, J. Nucl. Mater., Volume 227 (1996), p. 237 | DOI
[11] The essential structure of constitutive laws for metal composites and polycrystals, J. Mech. Phys. Solids, Volume 15 (1967), p. 79 | DOI
[12] Micromechanics of Defects in Solids, Martinus-Nijhoff Publishers, Dordrecht, The Netherlands, 1987
[13] The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. A, Volume 241 (1957), p. 366 | MR | Zbl
[14] The problem of two plastic and heterogeneous inclusions in an anisotropic medium, Int. J. Eng. Sci., Volume 25 (1987), p. 691 | DOI | Zbl
[15] Static elastic and thermoelastic fluctuations in multiphase composites, J. Mech. Phys. Solids, Volume 35 (1987), p. 37 | DOI | Zbl
[16] Residual stresses and stored elastic energy of composites and polycrystals, J. Mech. Phys. Solids, Volume 38 (1990), p. 115 | DOI | Zbl
[17] Macroscopic behavior, fluctuations and texture evolution in viscoplastic polycrystals, Ph. D. Thesis, University of Pennsylvania, USA (2003)
[18] Mechanical field fluctuations in polycrystals estimated by homogenization techniques:, Proc. R. Soc. Lond. A, Volume 460 (2004), p. 3589 | DOI | MR | Zbl
[19] Self-consistent modeling of the mechanical behavior of viscoplastic polycrystals incorporating intragranular field fluctuations, Phil. Mag., Volume 87 (2007), p. 4287 | DOI
[20] Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, MIT Press, 1971
[21] Residual stresses in annealed Zircaloy, Acta Metall., Volume 37 (1989), p. 979 | DOI
[22] Micromechanical modelling of the viscoplastic behavior of olivine, J. Geophys. Res. B, Volume 113 (2008), p. B09202 | DOI
[23] A high temperature precision X-ray camera. Some measurements of the thermal coefficients of expansion of Beryllium, J. Appl. Phys., Volume 20 (1949), p. 908 | DOI
[24] Development of intergranular thermal residual stresses in Beryllium during cooling from processing temperatures, Acta Mater., Volume 57 (2009), p. 972 | DOI
[25] Temperature dependence of the elastic moduli in -uranium single crystals, J. Nucl. Mater., Volume 18 (1966), p. 39 | DOI
[26] Thermal expansion of -uranium, J. Nucl. Mater., Volume 18 (1966), p. 55 | DOI
[27] A study of residual stresses in Zircaloy-2 with rod texture, Acta Metall. Mater., Volume 42 (1994), p. 4143 | DOI
[28] Extension of the visco-plastic self-consistent model to account for elasto-visco-plastic behavior using a perturbed visco-plastic approach, Modell. Simul. Mater. Sci. Eng., Volume 27 (2019), 085013 | DOI
[29] New robust self-consistent homogenization schemes of elasto-viscoplastic polycrystals, Int. J. Solids Struct., Volume 202 (2020), p. 434 | DOI
Cité par Sources :
Commentaires - Politique