We review the class of implicit algebraic constitutive relations for fluids which includes in its ambit those whose material properties depend on the invariants of the stress, the symmetric part of the velocity gradient, as well as their mixed invariants. Such constitutive relations can describe the response of complex fluids whose material properties depend on the mechanical pressure, shear rate, etc. The class of models under consideration can describe the non-monotone relationship between the shear stress and the shear rate observed in experiments on colloids, as well as other novel response characteristics of non-Newtonian fluids. Constitutive relations for power-law fluids, generalized Stokesian fluids and Piezo-viscous fluids are special sub-classes of the class of fluids considered herein.
Accepted:
Online First:
Published online:
Kumbakonam Rajagopal 1
@article{CRMECA_2023__351_S1_703_0, author = {Kumbakonam Rajagopal}, title = {A review of implicit algebraic constitutive relations for describing the response of nonlinear fluids}, journal = {Comptes Rendus. M\'ecanique}, pages = {703--720}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, number = {S1}, year = {2023}, doi = {10.5802/crmeca.180}, language = {en}, }
TY - JOUR AU - Kumbakonam Rajagopal TI - A review of implicit algebraic constitutive relations for describing the response of nonlinear fluids JO - Comptes Rendus. Mécanique PY - 2023 SP - 703 EP - 720 VL - 351 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crmeca.180 LA - en ID - CRMECA_2023__351_S1_703_0 ER -
Kumbakonam Rajagopal. A review of implicit algebraic constitutive relations for describing the response of nonlinear fluids. Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 703-720. doi : 10.5802/crmeca.180. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.180/
[1] Sur le mouvement de l’eau par des tuyaux de conduite, Mémoires de l’académie des sciences de Berlin (1754), pp. 111-148
[2] Principes généraux de l’état d’équilibre des fluides; Principes généraux du mouvement des fluides; Continuation des recherches sur la théorie du mouvement des fluides, Histoire de l’Académie de Berlin (1755)
[6] Mémoire sur les équations générales de l’équilibre et du mouvement des corps solides élastiques et de fluides, L’imprimerie Royale, 1831
[7] On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids, Trans. Camb. Philos. Soc., Volume 8 (1845), pp. 287-308
[8] A program toward rediscovering the rational mechanics of the age of reason, Arch. Hist. Exact Sci., Volume 1 (1960) no. 1, pp. 3-36 | MR | Zbl
[9] History of Mechanics, Editions du Griffon, Neuchatel, Switzerland, Dover Publications, 1988
[10] On the classification of incompressible fluids and a mathematical analysis of the equations that govern their motion, SIAM J. Math. Anal., Volume 52 (2020) no. 2, pp. 1232-1289 | DOI | MR | Zbl
[11] The non-linear field theories of mechanics, Springer, 1992 | DOI
[12] Mechanics and mathematics of fluids of the differential type, Advances in Mechanics and Mathematics, 35, Springer, 2016 | DOI
[13] Mechanics of Non-Newtonian Fluids, Phys. Today, Volume 33 (1980) no. 4, pp. 57-58 | DOI
[14] Continuum Mechanics of viscoelastic liquids, Hindustan Publishing Corporation, Delhi, 1975 | MR
[15] Illustrations of the dynamical theory of gases, Philos. Mag., Volume 19 (1867), pp. 19-32
[16] Mechanical considerations-model systems-phenomenological theories of relaxation and of viscosity, First report on viscosity and plasticity, Volume 1 (1935)
[17] On the formulation of rheological equations of state, Proc. R. Soc. Lond., Ser. A, Volume 200 (1950) no. 1063, pp. 523-541 | DOI | MR | Zbl
[18] On implicit constitutive theories, Appl. Math., Praha, Volume 48 (2003) no. 4, pp. 279-319 | DOI | MR | Zbl
[19] On implicit constitutive theories for fluids, J. Fluid Mech., Volume 550 (2006), pp. 243-249 | DOI | MR | Zbl
[20] New experiments physico-mechanical, touching the spring of the air, and its effect, H. Hall, Oxford, 1662
[21] Recherches sur la dilation des gaz et vapeurs, lues a l’institut national, le 11 pluviose an 10, Annales de chimie ou recueil de mémoires concernant la chimie et les arts qui en dépendent et spécialement la pharmacie, Volume 334 (1802), pp. 137-175
[22] Viscometric Flows of Non-Newtonian Fluids, Springer Tracts in Natural Philosophy, 5, Springer, 1966 | DOI
[23] Fluids of differential type: critical review and thermodynamic analysis, Int. J. Eng. Sci., Volume 33 (1995) no. 5, pp. 689-729 | DOI | MR | Zbl
[24] Stress-Deformation Relations for Isotropic Materials, J. Ration. Mech. Anal., Volume 4 (1955) no. 2, pp. 323-425 | MR
[25] A mathematical theory of dilatancy, Am. J. Math., Volume 67 (1945) no. 3, pp. 350-362 | DOI | MR | Zbl
[26] Hydrodynamics of non-Newtonian fluids, Nature, Volume 160 (1947) no. 4070, p. 611-611 | DOI | MR
[27] Isothermals, Isopiestics and Isometrics relative to Viscosity, American Journal of Science (1880-1910), Volume 45 (1893) no. 266, pp. 87-96 | DOI
[28] On the definition of pressure in rheology, Rheology Bulletin, Volume 78 (2009) no. 2, pp. 12-15
[29] Remarks on the notion of “pressure”, Int. J. Non-Linear Mech., Volume 71 (2015), pp. 165-172 | DOI
[30] Pressure-viscosity relationships for elastohydrodynamics, Tribol. trans., Volume 46 (2003) no. 3, pp. 289-295 | DOI
[31] Elasto-hydrodynamic lubrication: The fundamentals of roller and gear lubrication, Pergamon Press, 1966
[32] Part III. Theory of invariants, Volume 1 (1971), pp. 239-353
[33] A generalization of the classical Euler and Korteweg Fluids (2023) (https://arxiv.org/abs/2301.03485)
[34] Sur la forme que prennent les équations du mouvements des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais connues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité, Archives Néerlandaises des Sciences exactes et naturelles, Volume 6 (1901), pp. 1-24 | Zbl
[35] A new development and interpretation of the Navier–Stokes fluid which reveals why the “Stokes assumption” is inapt, Int. J. Non-Linear Mech., Volume 50 (2013), pp. 141-151 | DOI
[36] The origin of sound absorption in water and in sea water, J. Acoust. Soc. Am., Volume 20 (1948) no. 6, pp. 868-873 | DOI
[37] Bulk viscosity of liquids, Phys. Rev., Volume 73 (1948), pp. 537-538
[38] The second viscosity of liquids, Phys. Rev., Volume 75 (1949) no. 9, pp. 1415-1422 | DOI
[39] The second coefficient of viscosity of liquids and gases, Rev. Mod. Phys., Volume 24 (1952) no. 2, pp. 108-116 | DOI
[40] On the viscosity of fluids according to the kinetic theory, Z. Phys., Volume 131 (1952) no. 3, pp. 273-289 | DOI | MR | Zbl
[41] Konsistenzmessungen von gummi-benzollösungen, Kolloid-Zeitschrift, Volume 39 (1926) no. 4, pp. 291-300 | DOI
[42] Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems, J. Colloid Interface Sci., Volume 20 (1965) no. 5, pp. 417-437 | DOI
[43] Rheological equations from molecular network theories, Transactions of the Society of Rheology, Volume 16 (1972) no. 1, pp. 99-127 | DOI
[44] Flows of materials with yield, J. Rheol., Volume 31 (1987) no. 5, pp. 385-404 | DOI | Zbl
[45] Generalizations of the Navier–Stokes fluid from a new perspective, Int. J. Eng. Sci., Volume 48 (2010) no. 12, pp. 1907-1924 | DOI | MR | Zbl
[46] Shear flows of a new class of power-law fluids, Appl. Math., Praha, Volume 58 (2013) no. 2, pp. 153-177 | DOI | MR | Zbl
[47] A new model to describe the response of a class of seemingly viscoplastic materials, Appl. Math., Volume 67 (2022) no. 2, pp. 153-165 | DOI | MR | Zbl
[48] Start-up shear flow of a shear-thinning fluid that approximates the response of viscoplastic fluids, Applied Mathematics and Computation, Volume 412 (2022), 126571 | MR | Zbl
[49] Jeffery–Hamel flow of a shear-thinning fluid that mimics the response of viscoplastic materials, International Journal of Non-Linear Mechanics, Volume 144 (2023), 104084
[50] Flow of “stress power-law” fluids between parallel rotating discs with distinct axes, Int. J. Non-Linear Mech., Volume 74 (2015), pp. 73-83 | DOI
[51] Flow of a class of fluids defined via implicit constitutive equation down an inclined plane: Analysis of the quasi-steady regime, Eur. J. Mech. B Fluids, Volume 61 (2017), pp. 200-208 | DOI | MR | Zbl
[52] Unsteady flows of a class of novel generalizations of the Navier–Stokes fluid, Appl. Math. Comput., Volume 219 (2013) no. 19, pp. 9935-9946 | DOI | MR | Zbl
[53] Squeeze Flow of Stress Power Law Fluids, Fluids, Volume 6 (2021) no. 6, 194 | DOI
[54] Shear thickening in low-concentration solutions of wormlike micelles. I. Direct visualization of transient behavior and phase transitions, J. Rheol., Volume 42 (1998) no. 5, pp. 1185-1208 | DOI
[55] Shear thickening in low-concentration solutions of wormlike micelles. II. Slip, fracture, and stability of the shear-induced phase, J. Rheol., Volume 42 (1998) no. 5, pp. 1209-1226 | DOI
[56] Observation of bulk phase separation and coexistence in a sheared micellar solution, Phys. Rev. Lett., Volume 79 (1997) no. 12, pp. 2359-2362 | DOI
[57] Flow regimes of dilute surfactant solutions, J. Non-Newton. Fluid Mech., Volume 101 (2001) no. 1-3, pp. 149-172 | DOI
[58] Vorticity banding during the lamellar-to-onion transition in a lyotropic surfactant solution in shear flow, Eur. Phys. J. E, Volume 21 (2006) no. 2, pp. 133-143 | DOI
[59] A rheological study in the dilute regime of the worm-micelle fluid made of zwitterionic surfactant (TDPS), anionic surfactant (SDS), and brine, J. Colloid Interface Sci., Volume 348 (2010) no. 1, pp. 152-158 | DOI
[60] Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids, J. Non-Newton. Fluid Mech., Volume 216 (2015), pp. 13-21 | DOI | MR
[61] Finite element approximation of steady flows of colloidal solutions, ESAIM, Math. Model. Numer. Anal., Volume 55 (2021), pp. 1963-2011 | DOI | MR | Zbl
[62] Numerical scheme for simulation of transient flows of non-Newtonian fluids characterised by a non-monotone relation between the symmetric part of the velocity gradient and the Cauchy stress tensor, Acta Mech., Volume 230 (2019) no. 3, pp. 729-747 | DOI | MR
[63] Flow past a porous plate of non-Newtonian fluids with implicit shear stress shear rate relationships, Eur. J. Mech. B Fluids, Volume 92 (2022), pp. 166-173 | DOI | MR | Zbl
[64] Some remarks on the Navier–Stokes equations with a pressure-dependent viscosity, Commun. Partial Differ. Equations, Volume 11 (1986) no. 7, pp. 779-793 | DOI | MR | Zbl
[65] Some results about stationary Navier–Stokes equations with a pressure-dependent viscosity, Navier–Stokes equations: theory and numerical methods (Varenna, 1997) (Rodolfo Salvi, ed.) (Pitman Research Notes in Mathematics Series), Volume 388, Addison Wesley Longman, 1998, pp. 31-37 | MR | Zbl
[66] Flows of incompressible fluids with pressure-dependent viscosity (and their application to modelling the flow in journal bearing), Ph. D. Thesis, Univerzita Karlova, Matematicko-fyzikální fakulta, Prague, Czech Republic (2011)
[67] Simple flows of fluids with pressure–dependent viscosities, Proc. R. Soc. Lond., Ser. A, Volume 457 (2001) no. 2011, pp. 1603-1622 | DOI | Zbl
[68] Revisiting plane Couette–Poiseuille flows of a piezo-viscous fluid, J. Non-Newton. Fluid Mech., Volume 154 (2008) no. 2-3, pp. 170-178 | DOI
[69] Further remarks on simple flows of fluids with pressure-dependent viscosities, Nonlinear Anal., Real World Appl., Volume 12 (2011) no. 1, pp. 394-402 | DOI | MR | Zbl
[70] Flows of fluids with pressure dependent viscosities between rotating parallel plates, New Trends in Mathematical Physics, World Scientific, 2005, pp. 172-183 | DOI | Zbl
[71] On an inconsistency in the derivation of the equations of elastohydrodynamic lubrication, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, Volume 459 (2003) no. 2039, pp. 2771-2786 | DOI | MR | Zbl
[72] On steady inner flows of an incompressible fluid with the viscosity depending on the pressure and the shear rate, Nonlinear Anal., Real World Appl., Volume 10 (2009) no. 4, pp. 1943-1954 | DOI | MR | Zbl
[73] On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities, Appl. Math., Praha, Volume 56 (2011) no. 3, pp. 265-285 | DOI | MR | Zbl
[74] Numerical simulations of an incompressible piezoviscous fluid flowing in a plane slider bearing, Meccanica, Volume 53 (2018) no. 1, pp. 209-228 | DOI | MR
[75] Finite element approximation of flow of fluids with shear-rate-and pressure-dependent viscosity, IMA J. Numer. Anal., Volume 32 (2012) no. 4, pp. 1604-1634 | DOI | MR | Zbl
[76] On lower-dimensional models in lubrication, Part A: Common misinterpretations and incorrect usage of the Reynolds equation, Proc. IMechE. Part J: J Engineering Tribology, Volume 235 (2021) no. 8, pp. 1692-1702 | DOI
[77] On lower-dimensional models in lubrication, Part B: Derivation of a Reynolds type of equation for incompressible piezo-viscous fluids, Proc. IMechE. Part J: J Engineering Tribology, Volume 235 (2021) no. 8, pp. 1703-1718 | DOI
[78] Squeeze flow of a piezoviscous fluid, Appl. Math. Comput., Volume 274 (2016), pp. 414-429 | DOI | MR | Zbl
[79] Mathematical properties of the solutions to the equations governing the flow of fluids with pressure and shear rate dependent viscosities, Handbook of mathematical fluid dynamics (S. Friedlander; D. Serre, eds.), Volume 4, Elsevier, 2007, pp. 407-444
[80] Global existence of solutions for flows of fluids with pressure and shear dependent viscosities, Appl. Math. Lett., Volume 15 (2002) no. 8, pp. 961-967 | DOI | MR
[81] Global analysis of the flows of fluids with pressure-dependent viscosities, Arch. Ration. Mech. Anal., Volume 165 (2002) no. 3, pp. 243-269 | DOI | MR | Zbl
[82] Numerical simulations and global existence of solutions of two-dimensional flows of fluids with pressure-and shear-dependent viscosities, Math. Comput. Simul., Volume 61 (2003) no. 3-6, pp. 297-315 | DOI | MR | Zbl
[83] On steady flows of fluids with pressure–and shear–dependent viscosities, Proc. R. Soc. A: Math. Phys. Eng. Sci., Volume 461 (2005) no. 2055, pp. 651-670 | DOI | MR | Zbl
[85] Mathematical analysis of unsteady flows of fluids with pressure, shear-rate, and temperature dependent material moduli that slip at solid boundaries, SIAM J. Math. Anal., Volume 41 (2009) no. 2, pp. 665-707 | DOI | MR | Zbl
[86] On fully developed flows of fluids with a pressure dependent viscosity in a pipe, Appl. Math., Praha, Volume 50 (2005) no. 4, pp. 341-353 | DOI | MR | Zbl
[87] On steady flows of incompressible fluids with implicit power-law-like rheology, Adv. Calc. Var., Volume 2 (2009) no. 2, pp. 109-136 | DOI | MR | Zbl
[88] On unsteady flows of implicitly constituted incompressible fluids, SIAM J. Math. Anal., Volume 44 (2012) no. 4, pp. 2756-2801 | DOI | MR | Zbl
[89] On flows of fluids described by an implicit constitutive equation characterized by a maximal monotone graph, Mathematical Aspects of Fluid Mechanics (James C. Robinson; José L. Rodrigo; Witold Sadowski, eds.) (London Mathematical Society Lecture Note Series), Volume 402, Cambridge University Press, 2012, pp. 23-51 | DOI | MR | Zbl
[90] Existence of global weak solutions to implicitly constituted kinetic models of incompressible homogeneous dilute polymers, Commun. Partial Differ. Equations, Volume 38 (2013) no. 5, pp. 882-924 | DOI | MR | Zbl
[91] Théorie analytique de la chaleur mise en harmonie avec la thermodynamique et avec la Théorie mécanique de la Lumière: Refroidissement et chauffement par rayonnement, conductibilité des tiges, lames et masses cristallines, courants de convection, Théorie mécanique de la Lumière. xxxii, 625,[1] p, 2, Gauthier-Villars, 1903
Cited by Sources:
Comments - Policy