This work proposes a new method aiming at the direct identification of viscoelastic properties of materials with a Laplace formalism implemented in the Virtual Fields Method and named L-VFM. Using a single test, this formalism allows for a direct extraction of the different viscoelastic properties without any parametric description of their time dependency. The Laplace transform enables the use of theory of elasticity in the Laplace domain. The constitutive equations are expressed in the plane stress framework with the 2D plane stress stiffness coefficients. The conversion from the 2D plane stress stiffness coefficients to the bulk and shear moduli as well as Poisson’s ratio and Young’s modulus is realised in the Laplace domain. The inverse Laplace transform is then applied to these functions in order to obtain the temporal evolution of the material properties. The L-VFM changes the viscoelastic identification from a non-linear to a linear process.
Révisé le :
Accepté le :
Publié le :
Quentin Marcot 1, 2 ; Thomas Fourest 1 ; Bertrand Langrand 1, 2 ; Fabrice Pierron 3, 4
@article{CRMECA_2023__351_G1_171_0, author = {Quentin Marcot and Thomas Fourest and Bertrand Langrand and Fabrice Pierron}, title = {The {Laplace} {Virtual} {Fields} {Method} for the direct extraction of viscoelastic properties of materials}, journal = {Comptes Rendus. M\'ecanique}, pages = {171--199}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, year = {2023}, doi = {10.5802/crmeca.181}, language = {en}, }
TY - JOUR AU - Quentin Marcot AU - Thomas Fourest AU - Bertrand Langrand AU - Fabrice Pierron TI - The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materials JO - Comptes Rendus. Mécanique PY - 2023 SP - 171 EP - 199 VL - 351 PB - Académie des sciences, Paris DO - 10.5802/crmeca.181 LA - en ID - CRMECA_2023__351_G1_171_0 ER -
%0 Journal Article %A Quentin Marcot %A Thomas Fourest %A Bertrand Langrand %A Fabrice Pierron %T The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materials %J Comptes Rendus. Mécanique %D 2023 %P 171-199 %V 351 %I Académie des sciences, Paris %R 10.5802/crmeca.181 %G en %F CRMECA_2023__351_G1_171_0
Quentin Marcot; Thomas Fourest; Bertrand Langrand; Fabrice Pierron. The Laplace Virtual Fields Method for the direct extraction of viscoelastic properties of materials. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 171-199. doi : 10.5802/crmeca.181. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.181/
[1] ISO 899-1(en): Plastics â Determination of creep behaviour â Part 1: Tensile creep (2019) (Standard) | DOI
[2] ISO 6271-1(en): Plastics â Determination of dynamic mechanical properties â Part 1: General principles (2019) (Standard) | DOI
[3] SO527-1(en): Plastics â Determination of tensile properties â Part 1: General principles (2019) (Standard) | DOI
[4] Poisson’s Ratio in Linear Viscoelasticity â A Critical Review, Mech. Time Depend. Mater., Volume 6 (2002) no. 1, pp. 3-51 | DOI
[5] Image Correlation for Shape, Motion and Deformation Measurements, Springer, Boston, MA, 2009 | DOI
[6] Direct measurement and master curve construction of viscoelastic Poisson’s ratio with digital image correlation, Strain, Volume 54 (2018) no. 6, e12294 | DOI
[7] Study on the viscoelastic Poissonâs Ratio of Solid Propellants Using Digital Image Correlation Method, Propellants, Explos., Pyrotech., Volume 41 (2016) no. 5, pp. 835-843 | DOI
[8] Simultaneous measurement of elastic constants from dynamic mechanical analysis with digital image correlation, Polymer, Volume 242 (2022), 124562 | DOI
[9] Overview of Identification Methods of Mechanical Parameters Based on Full-field Measurements, Exp. Mech., Volume 48 (2008) no. 4, pp. 381-402 | DOI
[10] Full-Field Measurements and Identification in Solid Mechanics, Mechanical Engineering and Solid Mechanics Series, ISTE; John Wiley & Sons, 2013 | DOI | Zbl
[11] Towards Material Testing 2.0. A review of test design for identification of constitutive parameters from full-field measurements, Strain, Volume 57 (2020) no. 3, e12370 | DOI
[12] Principe des travaux virtuels et identification, C. R. Acad. Sci., Paris, Série 2, Mécanique, Physique, Chimie, Sciences de lâunivers, Sciences de la Terre, Volume 309 (1989) no. 1, pp. 1-5 | Zbl
[13] The Virtual Fields Method, Springer New York, New York, NY, 2012 | DOI
[14] Full-Field Strain Measurement and Identification of Composites Moduli at High Strain Rate with the Virtual Fields Method, Exp. Mech., Volume 51 (2011) no. 4, pp. 509-536 | DOI
[15] Application of the Virtual Fields Method to a relaxation behaviour of rubbers, J. Mech. Phys. Solids, Volume 116 (2018), pp. 416-431 | DOI
[16] Simultaneous Identification of Two-Independent Viscoelastic Characteristics with the Virtual Fields Method, Computational and Experimental Simulations in Engineering (Hiroshi Okada; Satya N. Atluri, eds.) (Mechanisms and Machine Science), Volume 75, Springer, Cham (2020), pp. 11-20 | DOI
[17] The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction, Springer, Berlin Heidelberg, 1989 | DOI
[18] Viscoelastic Modeling for Structural Analysis, John Wiley & Sons, 2019 | DOI
[19] Methods of interconversion between linear viscoelastic material functions. Part I - A numerical method based on Prony series, Int. J. Solids Struct., Volume 36 (1998) no. 11, pp. 1653-1675 | DOI | Zbl
[20] A simple collocation method for fitting viscoelastic models to experimental data (1962) no. 51778 (Technical report) | DOI
[21] Numerical inversion of the Laplace–Carson transform applied to homogenization of randomly reinforced linear viscoelastic media, Comput. Mech., Volume 40 (2007) no. 4, pp. 771-789 | DOI | Zbl
[22] Computing Stresses from Measured In-plane Strains in Viscoelastic Body under Plane Stress Condition, Adv. Exp. Mech., Volume 5 (2020), pp. 135-140 | DOI
[23] Zur Theorie der elastischen Nachwirkung, Annalen der Physik und Chemie, Volume 241 (1878) no. 11, pp. 430-432 | DOI | Zbl
[24] Stress Analysis of Viscoelastic Composite Materials, J. Compos. Mater., Volume 1 (1967) no. 3, pp. 228-267 | DOI
[25] Viscoelastic Properties of Polymers, John Wiley & Sons, 1980
[26] Théorie analytique des probabilités, Mme Ve Courcier, imprimeur-libraire pour les mathématiques et la marine, 57 quai des Augustins, 1812
[27] Numerical inverse Laplace transformation using concentrated matrix exponential distributions, Performance Evaluation, Volume 137 (2020), 102067 | DOI
[28] Time Dependence in Material Properties: An Overview, Mech. Time-Depend. Mater., Volume 1 (1997) no. 1, pp. 3-31 | DOI
[29] Sensitivity-based virtual fields for the non-linear Virtual Fields Method, Comput. Mech., Volume 60 (2017) no. 3, pp. 409-431 | DOI | MR | Zbl
[30] Image-Based Inertial Impact test for characterisation of strain rate dependency of Ti6Al4V titanium alloy, Exp. Mech., Volume 60 (2020) no. 2, pp. 235-248 | DOI
[31] Extension of the sensitivity-based virtual fields to large deformation anisotropic plasticity, Int. J. Mater. Form., Volume 12 (2019) no. 3, pp. 457-476 | DOI
[32] Robustness of specimen design criteria for identification of anisotropic mechanical behaviour from heterogeneous mechanical fields, Computational Materials Science, Volume 207 (2022), 111260 | DOI
[33] An Image Based Inertial Impact test to extract viscoelastic constitutive parameters, 36th Technical Conference of the American Society for Composites 2021: Composites Ingenuity Taking on Challenges in Environment-Energy-Economy (Ozden Ochoa, ed.) (Proceedings of the American Society for Composites), DEStech Publications, Inc. (2021), pp. 904-913 | DOI
[34] Table of Laplace transforms, W. B. Saunders Company, 1966 | Zbl
[35] Numerical Laplace Transformation and Inversion using Fast Fourier Transform, J. Soc. Mech. Eng. Int. J. Ser. 1, Solid mechanics, strength of materials, Volume 35 (1992) no. 3, pp. 319-324 | DOI
[36] A Unified Framework for Numerically Inverting Laplace Transforms, INFORMS J. Comput., Volume 18 (2006) no. 4, pp. 408-421 | DOI | MR | Zbl
[37] An Introduction to Numerical Transform Inversion and Its Application to Probability Models, Computational Probability (Winfried K. Grassmann, ed.) (International Series in Operations Research & Management Science), Volume 24, Springer, Boston MA, 2000, pp. 257-323 | DOI | Zbl
[38] Observing Stochastic Processes, and Approximate Transform Inversion, Oper. Res., Volume 14 (1966) no. 3, pp. 444-459 | DOI | MR
[39] The numerical Laplace transform: An accurate technique for analyzing electromagnetic transients on power system devices, Int. J. Electr. Power Energy Syst., Volume 31 (2009) no. 2-3, pp. 116-123 | DOI
[40] Z-set -suite logicielle pour la simulation des matériaux et structures, 14 Colloque National en Calcul des Structures (2019)
[41] Effect of DIC spatial resolution, noise and interpolation error on identification results with the VFM, Strain, Volume 51 (2015) no. 3, pp. 206-222 | DOI
[42] An Image-Based Inertial Impact (IBII) Test for Tungsten Carbide Cermets, J. dynamic behavior mater., Volume 4 (2018) no. 4, pp. 481-504 | DOI
[43] Special virtual fields for the direct determination of material parameters with the Virtual Fields Method. 1 â Principle and definition, Int. J. Solids Struct., Volume 39 (2002) no. 10, pp. 2691-2705 | DOI | Zbl
[44] General framework for the identification of constitutive parameters from full-field measurements in linear elasticity, Int. J. Solids Struct., Volume 44 (2007) no. 14, pp. 4978-5002 | DOI | Zbl
[45] Viscoelastic Relaxation Modulus Characterization Using Prony Series, Lat. Am. J. Solids Struct., Volume 12 (2015) no. 2, pp. 420-445 | DOI
[46] New finite difference formulas for numerical differentiation, J. Comput. Appl. Math., Volume 126 (2000) no. 1, pp. 269-276 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique