Comptes Rendus
Electric sampling of soot particles in spreading non-premixed flames: methodology and influence of gravity
Comptes Rendus. Mécanique, Volume 351 (2023) no. S2, pp. 19-40.

Finer strategies of spacecraft fire mitigation require more experimental data related to fire detection. Fire detection systems developed on Earth rely massively on the optical detection of soot particles, which are present in the smoke. To detect the fire correctly, it is thus important to know how the optical properties of these particles are affected in reduced gravity. With different transport processes and increased residence time, soot in reduced gravity can be different from those produced at normal gravity. As their optical properties are related to their morphological properties, a better understanding about the evolution of soot particle morphology in flames under microgravity conditions is required. Within this context, a novel technique of soot sampling using electric field is applied to a spreading non-premixed flame at normal and micro-gravity. The soot particles sampled are observed subsequently under Transmission Electron Microscopy (TEM). Density, soot particle projected area, radius of gyration, fractal dimension, and primary particle size are extracted and the influence of gravity is investigated with the evolution of these morphological properties within the flame. Though the present study cannot be conclusive in itself, the similarity between the evolution of the optical density measured throughout the flame just before the electric perturbation required by the sampling technique and the evolution of the amount of soot deposited due to the electric perturbation along the sampling plates supports the future works that need to be devoted to further assess the consistency of the technique.

Supplementary Materials:
Supplementary materials for this article are supplied as separate files:

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crmeca.182
Mots clés : Flame spread, Microgravity, Soot sampling, Soot morphology, Fire safety
Yutao Li 1 ; Antoine Bordino 2 ; Augustin Guibaud 3 ; David Montero 4 ; Jean-Marie Citerne 1 ; Jean-Louis Consalvi 5 ; Jose Torero 3 ; Guillaume Legros 1, 6

1 Institut Jean Le Rond d’Alembert/UMR CNRS 7190, Sorbonne Université, Paris F-75005, France
2 Ecole Polytechnique, Palaiseau, France
3 Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E6BT, UK
4 Fédération de Chimie et Matériaux de Paris-Centre, Sorbonne Université, Paris F-75005, France
5 Aix-Marseille Université, CNRS, IUSTI UMR 7343, 5 rue E. Fermi, 13013 Marseille, France
6 CNRS-ICARE / Univ. Orléans, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2023__351_S2_19_0,
     author = {Yutao Li and Antoine Bordino and Augustin Guibaud and David Montero and Jean-Marie Citerne and Jean-Louis Consalvi and Jose Torero and Guillaume Legros},
     title = {Electric sampling of soot particles in spreading non-premixed flames: methodology and influence of gravity},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {19--40},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     number = {S2},
     year = {2023},
     doi = {10.5802/crmeca.182},
     language = {en},
}
TY  - JOUR
AU  - Yutao Li
AU  - Antoine Bordino
AU  - Augustin Guibaud
AU  - David Montero
AU  - Jean-Marie Citerne
AU  - Jean-Louis Consalvi
AU  - Jose Torero
AU  - Guillaume Legros
TI  - Electric sampling of soot particles in spreading non-premixed flames: methodology and influence of gravity
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 19
EP  - 40
VL  - 351
IS  - S2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.182
LA  - en
ID  - CRMECA_2023__351_S2_19_0
ER  - 
%0 Journal Article
%A Yutao Li
%A Antoine Bordino
%A Augustin Guibaud
%A David Montero
%A Jean-Marie Citerne
%A Jean-Louis Consalvi
%A Jose Torero
%A Guillaume Legros
%T Electric sampling of soot particles in spreading non-premixed flames: methodology and influence of gravity
%J Comptes Rendus. Mécanique
%D 2023
%P 19-40
%V 351
%N S2
%I Académie des sciences, Paris
%R 10.5802/crmeca.182
%G en
%F CRMECA_2023__351_S2_19_0
Yutao Li; Antoine Bordino; Augustin Guibaud; David Montero; Jean-Marie Citerne; Jean-Louis Consalvi; Jose Torero; Guillaume Legros. Electric sampling of soot particles in spreading non-premixed flames: methodology and influence of gravity. Comptes Rendus. Mécanique, Volume 351 (2023) no. S2, pp. 19-40. doi : 10.5802/crmeca.182. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.182/

[1] Council National Research Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era, National Academies Press, 2011

[2] Augustin Guibaud; Guillaume Legros; Jean-Louis Consalvi; Jose Torero Fire safety in spacecraft: Past incidents and Deep Space challenges, Acta Astronaut., Volume 195 (2022), pp. 344-354 | DOI

[3] Richard Bukowski; George W. Mulholland Smoke detector design and smoke properties. Volume 13, National Bureau of Standards technical note, 973, Department of Commerce, National Bureau of Standards, National Engineering Laboratory, Center for Fire Research, 1978

[4] Richard Bukowski; Richard Peacock; Jason Averill; Thomas Cleary; Nelson Bryner; Paul Reneke Performance of Home Smoke Alarms, Analysis of the Response of Several Available Technologies in Residential Fire Settings (2003) no. Technical Note (NIST TN) - 1455 (Technical report)

[5] Marit E. Meyer; David L. Urban; George W. Mulholland; Victoria Bryg; Zeng-Guang Yuan; Gary A. Ruff; Thomas Cleary; Jiann Yang Evaluation of spacecraft smoke detector performance in the low-gravity environment, Fire Saf. J., Volume 98 (2018), pp. 74-81 | DOI

[6] Jerry C. Ku; Devon W. Griffin; Paul S. Greenberg; John Roma Buoyancy-Induced Differences in Soot Morphology, Combust. Flame, Volume 102 (1995) no. 1, pp. 216-218 | DOI

[7] H. Ito; Osamu Fujita; Kenichi Ito Agglomeration of soot particles in diffusion flames under microgravity, Combust. Flame, Volume 99 (1994) no. 2, pp. 363-370 | DOI

[8] M. Y. Choi; Anthony Hamins; George W. Mulholland; Takashi Kashiwagi Simultaneous optical measurement of soot volume fraction and temperature in premixed flames, Combust. Flame, Volume 99 (1994) no. 1, pp. 174-186 | DOI

[9] H. A. Michelsen; C. Schulz; G. J. Smallwood; Stefan Will Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications, Prog. Energy Combust. Sci., Volume 51 (2015), pp. 2-48 | DOI

[10] M. Y. Choi; George W. Mulholland; Anthony Hamins; Takashi Kashiwagi Comparisons of the soot volume fraction using gravimetric and light extinction techniques, Combust. Flame, Volume 102 (1995) no. 1-2, pp. 161-169 | DOI

[11] Christopher M. Sorensen Light Scattering by Fractal Aggregates: A Review, Aerosol Sci. Technol., Volume 35 (2001) no. 2, pp. 648-687 | DOI

[12] Jörg Reimann; Stefan Will Optical diagnostics on sooting laminar diffusion flames in microgravity, Microgravity Sci. Technol., Volume 16 (2005) no. 1, pp. 333-337 | DOI

[13] Osamu Fujita; Kenichi Ito Observation of soot agglomeration process with aid of thermophoretic force in a microgravity jet diffusion flame, Exp. Therm. Fluid Sci., Volume 26 (2002) no. 2-4, pp. 305-311 | DOI

[14] Wongyo Kim; Christopher M. Sorensen; Danny Fry; Amitabha Chakrabarti Soot aggregates, superaggregates and gel-like networks in laminar diffusion flames, J. Aerosol Sci., Volume 37 (2006) no. 3, pp. 386-401 | DOI

[15] Romain Ceolato; Lucas Paulien; Justin B. Maughan; Christopher M. Sorensen; Matthew J. Berg Radiative properties of soot fractal superaggregates including backscattering and depolarization, J. Quant. Spectrosc. Radiat. Transfer, Volume 247 (2020), 106940 | DOI

[16] Augustin Guibaud; Jean-Marie Citerne; Jean-Louis Consalvi; Guillaume Legros On the effects of opposed flow conditions on non-buoyant flames spreading over polyethylene-coated wires - Part 1: spread rate and soot production, Combust. Flame, Volume 221 (2020), pp. 530-543 | DOI

[17] Augustin Guibaud; Jean-Marie Citerne; Jean-Louis Consalvi; Guillaume Legros On the effects of opposed flow conditions on non-buoyant flames spreading over polyethylene-coated wires - Part 2: soot oxidation quenching and smoke release, Combust. Flame, Volume 221 (2020), pp. 544-551 | DOI

[18] Ümit Özgür Köylü; Gerard M. Faeth Radiative Properties of Flame-Generated Soot, J. Heat Transfer, Volume 115 (1993) no. 2, pp. 409-417 | DOI

[19] Tiago L. Farias; Ümit Özgür Köylü; Maria da Gracia Carvalho Range of validity of the Rayleigh–-Debye-–Gans theory for optics of fractal aggregates, Appl. Opt., Volume 35 (1996) no. 33, pp. 6560-6567 | DOI

[20] R. A. Dobbins; Constantine M. Megaridis Morphology of flame-generated soot as determined by thermophoretic sampling, Langmuir, Volume 3 (1987) no. 2, pp. 254-259 | DOI

[21] Ümit Özgür Köylü; Charles S. McEnally; Daniel E Rosner; Lisa D. Pfefferle Simultaneous measurements of soot volume fraction and particle size/microstructure in flames using a thermophoretic sampling technique, Combust. Flame, Volume 110 (1997) no. 4, pp. 494-507 | DOI

[22] Mohammadreza Kholghy; Meghdad Saffaripour; Christopher Yip; Murray John Thomson The evolution of soot morphology in a laminar coflow diffusion flame of a surrogate for Jet A-1, Combust. Flame, Volume 160 (2013) no. 10, pp. 2119-2130 | DOI

[23] Maria L. Botero; Nick Eaves; Jochen A. H. Dreyer; Yuan Sheng; Jethro Akroyd; Wenming Yang; Markus Kraft Experimental and numerical study of the evolution of soot primary particles in a diffusion flame, Proc. Combust. Inst., Volume 37 (2019) no. 2, pp. 2047-2055 | DOI

[24] Bogdan Konsur; Constantine M. Megaridis; Devon W. Griffin Fuel preheat effects on soot-field structure in laminar gas jet diffusion flames burning in 0-g and 1-g, Combust. Flame, Volume 116 (1999) no. 3, pp. 334-347 | DOI

[25] David L. Urban; Zeng-Guang Yuan; Peter B. Sunderland; G. T. Linteris; J. E. Voss; K.-C. Lin; Z. Dai; K. Sun; Gerard M. Faeth Structure and soot properties of nonbuoyant ethylene/air laminar jet diffusion flames, AIAA J., Volume 36 (1998) no. 8, pp. 1346-1360 | DOI

[26] Jean-Marie Citerne; Hugo Dutilleul; Koki Kizawa; Masashi Nagachi; Osamu Fujita; Masao Kikuchi; Grunde Jomaas; Sébastien Rouvreau; Jose L. Torero; Guillaume Legros Fire safety in space - Investigating flame spread interaction over wires, Acta Astronaut., Volume 126 (2016), pp. 500-509 | DOI

[27] Augustin Guibaud; Jean-Marie Citerne; Jean-Louis Consalvi; Guillaume Legros Pressure Effects on the Soot Production and Radiative Heat Transfer of Non-Buoyant Laminar Diffusion Flames Spreading in Opposed Flow over Insulated Wires, Combust. Flame, Volume 222 (2020), pp. 383-391 | DOI

[28] Jean-Louis Consalvi; Augustin Guibaud; Alain Coimbra; Jean-Marie Citerne; Guillaume Legros Effects of oxygen depletion on soot production, emission and radiative heat transfer in opposed-flow flame spreading over insulated wire in microgravity, Combust. Flame, Volume 230 (2021), 111447 | DOI

[29] James Lawton Electrical aspects of combustion, Clarenton (1969)

[30] Sunny Karnani; Derek Dunn-Rankin Detailed characterization of DC electric field effects on small non-premixed flames, Combust. Flame, Volume 162 (2015) no. 7, pp. 2865-2872 | DOI

[31] F. B. Carleton; Felix Jiri Weinberg Electric field-induced flame convection in the absence of gravity, Nature, Volume 330 (1987) no. 6149, pp. 635-636 | DOI

[32] Memdouh Belhi; Pascale Domingo; Pierre Vervisch Direct numerical simulation of the effect of an electric field on flame stability, Combust. Flame, Volume 157 (2010) no. 12, pp. 2286-2297 | DOI

[33] Jing Hu; Boris Rivin; Eran Sher The effect of an electric field on the shape of co-flowing and candle-type methane–air flames, Exp. Therm. Fluid Sci., Volume 21 (2000) no. 1-3, pp. 124-133 | DOI

[34] Hermann Schlichting; Joseph Kestin Boundary layer theory, 121, Springer, 1961

[35] Augustin Guibaud; Jean-Marie Citerne; Jean-Louis Consalvi; Osamu Fujita; Jose L. Torero; Guillaume Legros Experimental evaluation of flame radiative feedback: methodology and application to opposed flame spread over coated wires in microgravity, Fire Technol., Volume 56 (2020) no. 1, pp. 185-207 | DOI

[36] Kurt R. Sacksteder The implication of experimentally controlled gravitational accelerations for combustion science, Proc. Combust. Inst., Volume 23 (1991) no. 1, pp. 1589-1596 | DOI

[37] L. Xie; T. Kishi; M. Kono Investigation on the effect of electric fields on soot formation and flame structure of diffusion flames, Proc. Combust. Inst., Volume 24 (1992) no. 1, pp. 1059-1066 | DOI

[38] P. J. Mayo; Felix Jiri Weinberg On the size, charge and number-rate of formation of carbon particles in flames subjected to electric fields, Proc. R. Soc. Lond., Ser. A, Volume 319 (1970) no. 1538, pp. 351-371 | DOI

[39] Alexander B. Fialkov Investigations on ions in flames, Prog. Energy Combust. Sci., Volume 23 (1997) no. 5-6, pp. 399-528 | DOI

[40] H. F. Calcote; D. B. Olson; D. G. Keil Are ions important in soot formation?, Energy Fuels, Volume 2 (1988) no. 4, pp. 494-504 | DOI

[41] T. A. Sipkens; S. N. Rogak Technical note: Using k-means to identify soot aggregates in transmission electron microscopy images, J. Aerosol Sci., Volume 152 (2021), 105699 | DOI

[42] Guillaume Legros; Andres Fuentes; Sébastien Rouvreau; Pierre Joulain; B. Porterie; Jose L. Torero Transport mechanisms controlling soot production inside a non-buoyant laminar diffusion flame, Proc. Combust. Inst., Volume 32 (2009) no. 2, pp. 2461-2470 | DOI

[43] Zhongqiu Li; Liang Qiu; Xiaobei Cheng; Ying Li; Hui Wu The evolution of soot morphology and nanostructure in laminar diffusion flame of surrogate fuels for diesel, Fuel, Volume 211 (2018), pp. 517-528 | DOI

[44] Maria L. Botero; Yuan Sheng; Jethro Akroyd; Jacob Martin; Jochen A. H. Dreyer; Wenming Yang; Markus Kraft Internal structure of soot particles in a diffusion flame, Carbon, Volume 141 (2019), pp. 635-642 | DOI

[45] Brian R. Stanmore; Jean-Francois Brilhac; Patrick Gilot The oxidation of soot: a review of experiments, mechanisms and models, Carbon, Volume 39 (2001) no. 15, pp. 2247-2268 | DOI

[46] Ümit Özgür Köylü; Gerard M. Faeth Optical Properties of Soot in Buoyant Laminar Diffusion Flames, J. Heat Transfer, Volume 116 (1994) no. 4, pp. 971-979 | DOI

[47] Li Liu; Michael I. Mishchenko; W. Patrick Arnott A study of radiative properties of fractal soot aggregates using the superposition T-matrix method, J. Quant. Spectrosc. Radiat. Transfer, Volume 109 (2008) no. 15, pp. 2656-2663 | DOI

[48] Michael Altenhoff; Simon Aßmann; Christian Teige; Franz J. T. Huber; Stefan Will An optimized evaluation strategy for a comprehensive morphological soot nanoparticle aggregate characterization by electron microscopy, J. Aerosol Sci., Volume 139 (2020), 105470 | DOI

[49] D. Lottin; Daniel Ferry; J.-M. Gay; D. Delhaye; F.-X. Ouf On methods determining the fractal dimension of combustion aerosols and particleclusters, J. Aerosol Sci., Volume 58 (2013), pp. 41-49 | DOI

[50] Paul M. Anderson; Haiqing Guo; Peter B. Sunderland Repeatability and reproducibility of TEM soot primary particle size measurements and comparison of automated methods, J. Aerosol Sci., Volume 114 (2017), p. 317-X326 | DOI

[51] Bin Zhao; Zhiwei Yang; Jinjin Wang; Murray V. Johnston; Hai Wang Analysis of soot nanoparticles in a laminar premixed ethylene flame by scanning mobility particle sizer, Aerosol Sci. Technol., Volume 37 (2003) no. 8, pp. 611-620 | DOI

[52] Graeme Bushell; Rose Amal; Judy Raper The effect of polydispersity in primary particle size on measurement of the fractal dimension of aggregates, Part. Part. Syst. Charact., Volume 15 (1998) no. 1, pp. 3-8 | DOI

[53] J. Y. Yin; L. H. Liu Influence of complex component and particle polydispersity on radiative properties of soot aggregate in atmosphere, J. Quant. Spectrosc. Radiat. Transfer, Volume 111 (2010) no. 14, pp. 2115-2126 | DOI

[54] Nimeti Doner; Fengshan Liu Impact of morphology on the radiative properties of fractal soot aggregates, J. Quant. Spectrosc. Radiat. Transfer, Volume 187 (2017), pp. 10-19 | DOI

[55] Ümit Özgür Köylü; Gerard M. Faeth; Tiago L. Farias; Maria da Gracia Carvalho Fractal and projected structure properties of soot aggregates, Combust. Flame, Volume 100 (1995) no. 4, pp. 621-633 | DOI

[56] Kouji Adachi; Serena H Chung; Heiner Friedrich; Peter R Buseck Fractal parameters of individual soot particles determined using electron tomography: Implications for optical properties, J. Geophys. Res. Atmos., Volume 112 (2007) no. D14 | DOI

[57] Augustin Guibaud; Jean-Marie Citerne; J. M. Orlac’h; Osamu Fujita; Jean-Louis Consalvi; Jose L. Torero; Guillaume Legros Broadband modulated absorption/emission technique to probe sooting flames: Implementation, validation, and limitations, Proc. Combust. Inst., Volume 37 (2019) no. 3, pp. 3959-3966 | DOI

[58] Jean-Baptiste Renard; Mirvatte Francis; Edith Hadamcik; Daniel Daugeron; Benoît Couté; Bertrand Gaubicher; Matthieu Jeannot Scattering properties of sands. 2. Results for sands from different origins, Appl. Opt., Volume 49 (2010) no. 18, pp. 3552-3559 | DOI

[59] Augustin Guibaud; Jean-Louis Consalvi; J. M. Orlac’h; Jean-Marie Citerne; Guillaume Legros Soot production and radiative heat transfer in opposed flame spread over a polyethylene insulated wire in microgravity, Fire Technol., Volume 56 (2020) no. 1, pp. 287-314 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

An engineering model for creeping flame spread over idealized electrical wires in microgravity

Alain Coimbra; Yutao Li; Augustin Guibaud; ...

C. R. Méca (2023)


Combustion in microgravity: The French contribution

Roger Prud'homme; Guillaume Legros; José L. Torero

C. R. Méca (2017)


Computations of soot formation in ethylene/air counterflow diffusion flames and its interaction with radiation

Ignacio Hernández; Guillaume Lecocq; Damien Poitou; ...

C. R. Méca (2013)