Comptes Rendus
Research article
DIC Analyses and Parameter Calibration of a Strain Aging Sensitive Ductile Cast Iron
Comptes Rendus. Mécanique, Volume 352 (2024), pp. 1-17.

In the present work, the mechanical response of strain aging sensitive ductile cast iron was studied when subjected to uniaxial tension in temperatures ranging from 20°C up to 300°C. Digital Image Correlation (DIC) was used to measure the strain localization patterns due to dynamic strain aging. A constitutive law based on the Kubin–Estrin–McCormick model (KEMC) was used to model the behavior of the ductile cast iron in temperatures ranging from 20° up to 300°. The displacement fields were successfully measured and the strain localization patterns were observed. These measurements were employed to calibrate the parameters of the constitutive law. Numerical simulations are shown to be in agreement with experimental measurements at the macroscopic scale.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmeca.235
Keywords: Digital Image Correlation (DIC), Dynamic Strain Aging, Plasticity, FEM simulation, Ductile Cast Iron

Malo Valmalle 1, 2; Kim Widell 1; Risto Ilola 1; Sven Bossuyt 1

1 Aalto University, Department of Mechanical Engineering, Espoo, Finland
2 ENS Paris-Saclay, DGM–Department of Mechanical Engineering, Gif-sur-Yvette, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2024__352_G1_1_0,
     author = {Malo Valmalle and Kim Widell and Risto Ilola and Sven Bossuyt},
     title = {DIC {Analyses} and {Parameter} {Calibration} of a {Strain} {Aging} {Sensitive} {Ductile} {Cast} {Iron}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {1--17},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {352},
     year = {2024},
     doi = {10.5802/crmeca.235},
     language = {en},
}
TY  - JOUR
AU  - Malo Valmalle
AU  - Kim Widell
AU  - Risto Ilola
AU  - Sven Bossuyt
TI  - DIC Analyses and Parameter Calibration of a Strain Aging Sensitive Ductile Cast Iron
JO  - Comptes Rendus. Mécanique
PY  - 2024
SP  - 1
EP  - 17
VL  - 352
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.235
LA  - en
ID  - CRMECA_2024__352_G1_1_0
ER  - 
%0 Journal Article
%A Malo Valmalle
%A Kim Widell
%A Risto Ilola
%A Sven Bossuyt
%T DIC Analyses and Parameter Calibration of a Strain Aging Sensitive Ductile Cast Iron
%J Comptes Rendus. Mécanique
%D 2024
%P 1-17
%V 352
%I Académie des sciences, Paris
%R 10.5802/crmeca.235
%G en
%F CRMECA_2024__352_G1_1_0
Malo Valmalle; Kim Widell; Risto Ilola; Sven Bossuyt. DIC Analyses and Parameter Calibration of a Strain Aging Sensitive Ductile Cast Iron. Comptes Rendus. Mécanique, Volume 352 (2024), pp. 1-17. doi : 10.5802/crmeca.235. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.235/

[1] P. Minnebo; K. Nilsson; D. Blagoeva Tensile, Compression and Fracture Properties of Thick-Walled Ductile Cast Iron Components., J. Mater. Eng. Perform., Volume 16 (2007), pp. 35-45 | DOI

[2] K. Nilsson; P. Dillström; C. G. Andersson; F. Nilsson; M. Andersson; P. Minnebo; L. E. Björkegren; B. Erixon A Probabilistic Methodology to Determine Failure Probabilities and Acceptance Criteria for the KBS-3 Inserts Under Ice-Age Load Conditions, Nucl. Technol., Volume 163 (2008), pp. 3-14 | DOI

[3] Z. Jiang; Q. Zhang; H. Jiang; Z. Chen; X. Wu Spatial characteristics of the Portevin–Le Chatelier deformation bands in Al-4at%Cu polycrystals, Mater. Sci. Eng. A, Volume 403 (2005), pp. 154-164 | DOI

[4] T. Böhlke; G. Bondár; Y. Estrin; M. A. Lebyodkin Geometrically non-linear modeling of the Portevin–Le Chatelier effect, Comput. Mater. Sci., Volume 44 (2009), pp. 1076-1088 | DOI

[5] S. C. Ren; T. F. Morgeneyer; M. Mazière; S. Forest; G. Rousselier Portevin–Le Chatelier effect triggered by complex loading paths in an Al–Cu aluminium alloy, Philos. Mag., Volume 99 (2019), pp. 659-678 | DOI

[6] H. Halim; D. Wilkinson; M. Niewczas The Portevin–Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy, Acta Mater., Volume 55 (2007), pp. 4151-4160 | DOI

[7] R. C. Picu; G. Vincze; F. Ozturk; J. J. Gracio; F. Barlat; A. M. Maniatty Strain rate sensitivity of the commercial aluminum alloy AA5182-O, Mater. Sci. Eng. A, Volume 390 (2005), pp. 334-343 | DOI

[8] H. Louche; P. Vacher; R. Arrieux Thermal observations associated with the Portevin–Le Châtelier effect in an Al–Mg alloy, Mater. Sci. Eng. A, Volume 404 (2005), pp. 188-196 | DOI

[9] J. Belotteau; C. Berdin; S. Forest; A. Parrot; C. Prioul Mechanical Behavior and Crack Tip Plasticity of a Strain Aging Sensitive Steel, Mater. Sci. Eng. A, Volume 526 (2009), pp. 156-165 | DOI

[10] H. D. Wang; C. Berdin; M. Mazière; S. Forest; C. Prioul; A. Parrot; P. Le-Delliou Experimental and numerical study of dynamic strain ageing and its relation to ductile fracture of a C–Mn steel, Mater. Sci. Eng. As, Volume 547 (2012), pp. 19-31 | DOI

[11] L. Fournier; D. Delafosse; T. Magnin Oxidation induced intergranular cracking and Portevin–Le Chatelier effect in nickel base superalloy 718, Mater. Sci. Eng. A, Volume 316 (2001), pp. 166-173 | DOI

[12] K. B. S. Rao; S. Kalluri; G. R. Halford; M. A. McGaw Serrated flow and deformation substructure at room temperature in Inconel 718 superalloy during strain controlled fatigue, Scripta Metallurgica et Materialia, Volume 32 (1995), pp. 493-498 | DOI

[13] K. Prasad; S. V. Kamat Transient flow behaviour in a near alpha titanium alloy Timetal 834 in the dynamic strain aging regime, Mater. Sci. Eng. A, Volume 490 (2008), pp. 477-480 | DOI

[14] P. G. McCormick Theory of flow localisation due to dynamic strain ageing, Acta Metallurgica, Volume 36 (1988), pp. 3061-3067 | DOI

[15] L. P. Kubin; Y. Estrin The Portevin–Le Chatelier effect in deformation with constant stress rate, Acta Metallurgica, Volume 33 (1985), pp. 397-407 | DOI

[16] Y. Estrin; P. G. McCormick Modelling the transient flow behaviour of dynamic strain ageing materials, Acta Met. Mater., Volume 39 (1991), pp. 2977-2983 | DOI

[17] V. Björklund The effects of static strain aging on the mechanical performance of nodular cast iron, Ph. D. Thesis, Aalto University. School of Engineering (2021), 104 pages (Master’s thesis, http://urn.fi/urn:nbn:fi:aalto-202109059026)

[18] H. Leclerc; J. Neggers; F. Mathieu; F. Hild; S. Roux Correli 3.0 IDDN.FR.001.520008.000.S.P.2015.000.31500 (2015) (Technical report)

[19] S. Zhang; P. G. McCormick; Y. Estrin The Morphology of Portevin–Le Chatelier Bands: Finite Element Simulation for Al–Mg–Si, Acta Mater., Volume 49 (2001), pp. 1087-1094 | DOI

[20] F. Springer; Ch. Schwink Quantitative investigations on dynamic strain ageing in polycrystalline CuMn alloys, Scripta Metallurgica et Materialia, Volume 25 (1991) no. 12, pp. 2739-2744 | DOI

[21] Huaidong Wang; C. Berdin; Matthieu Mazière; Samuel Forest; Claude Prioul; Aurore Parrot; Patrick Le-Delliou Portevin–Le Chatelier (PLC) instabilities and slant fracture in C–Mn steel round tensile specimens, Scr. Mater., Volume 64 (2011) no. 5, pp. 430-433 | DOI

[22] A. Marais; M. Mazière; S. Forest; A. Parrot; P. Le Delliou Identification of a strain-aging model accounting for Lüders behavior in a C-Mn steel, Philos. Mag., Volume 92 (2012) no. 28-30, pp. 3589-3617 | DOI

[23] P. Virtanen; R. Gommers; T. E. Oliphant; M. Haberland; T. Reddy; D. Cournapeau; E. Burovski; P. Peterson; W. Weckesser; J. Bright; S. J. van der Walt; M. Brett; J. Wilson; K. J. Millman; N. Mayorov; A. R. J. Nelson; E. Jones; R. Kern; E. Larson; C. J. Carey; İ. Polat; Y. Feng; E. W. Moore; J. VanderPlas; D. Laxalde; J. Perktold; R. Cimrman; I. Henriksen; E. A. Quintero; C. R. Harris; A. M. Archibald; A. H. Ribeiro; F. Pedregosa; P. van Mulbregt; SciPy 1.0 Contributors SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Methods, Volume 17 (2020), pp. 261-272 | DOI

[24] Thomas Helfer; Bruno Michel; Jean-Michel Proix; Maxime Salvo; Jérôme Sercombe; Michel Casella Introducing the open-source mfront code generator: Application to mechanical behaviours and material knowledge management within the PLEIADES fuel element modelling platform, Comput. Math. Appl., Volume 70 (2015) no. 5, pp. 994-1023 | DOI | MR | Zbl

[25] Electricité de France Finite element code_aster, Analysis of Structures and Thermomechanics for Studies and Research, 1989–2022 (Open source on www.code-aster.org)

[26] C. Geuzaine; J.-F. Remacle Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng., Volume 79 (2009), pp. 1309-1331 | DOI | Zbl

[27] M. Mazière; J. Besson; S. Forest; B. Tanguy; H. Chalons; F. Vogel Numerical aspects in the finite element simulation of the Portevin–Le Chatelier effect, Comput. Methods Appl. Mech. Eng., Volume 199 (2010), pp. 734-754 | DOI | MR | Zbl

[28] P. Sahiluoma; Y. Yagodzinskyy; A. Forsström; H. Hänninen; S. Bossuyt Hydrogen Embrittlement of Nodular Cast Iron, Mater. Corros. - Werkst. Korros., Volume 72 (2021), pp. 245-254 | DOI

[29] F. Hild; A. Bouterf; L. Chamoin; F. Mathieu; J. Neggers; F. Pled; Z. Tomičević; S. Roux Toward 4D Mechanical Correlation, Adv. Model. and Simul. in Eng. Sci., Volume 3 (2016) no. 1, pp. 1-26 | DOI

Cited by Sources:

Comments - Policy