Comptes Rendus
Research article
SGS method applied to damage location and uncertainty modeling for sensor grid in the ISHM
Comptes Rendus. Mécanique, Volume 352 (2024), pp. 19-37.

Damage location estimation is a critical aspect of condition-based maintenance systems, particularly in the context of electromechanical impedance monitoring. Various approaches have been developed to estimate damage location, yet they often need more capability to assess the reliability of data collected from sensor grids. In this paper, we introduce a novel method based on Sequential Gaussian Simulation (SGS) to pinpoint damage locations on aluminum plates and create maps that illustrate the spatial uncertainty associated with damage index values throughout the structure. Our proposed approach builds upon the SGS method and encompasses the assessment of four different sensor grid configurations to investigate how sensor spacing affects spatial uncertainty. The findings demonstrate the technique’s effectiveness in accurately predicting damage positions. Moreover, by leveraging the uncertainty information generated, we can identify specific areas necessitating careful attention, thus offering valuable insights for optimizing sensor grid design.

L’estimation de la localisation des dommages est un aspect critique des systèmes de maintenance basés sur l’état, en particulier dans le contexte de la surveillance de l’impédance électromécanique. Diverses approches ont été mises au point pour estimer la localisation des dommages, mais elles nécessitent souvent davantage de capacités pour évaluer la fiabilité des données collectées à partir des grilles de capteurs. Dans cet article, nous présentons une nouvelle méthode basée sur la simulation gaussienne séquentielle (SGS) pour localiser les dommages sur les plaques d’aluminium et créer des cartes qui illustrent l’incertitude spatiale associée aux valeurs de l’indice de dommage dans l’ensemble de la structure. L’approche proposée s’appuie sur la méthode SGS et englobe l’évaluation de quatre configurations différentes de la grille de capteurs afin d’étudier comment l’espacement des capteurs affecte l’incertitude spatiale. Les résultats démontrent l’efficacité de la technique pour prédire avec précision les positions des dommages. De plus, en exploitant les informations d’incertitude générées, nous pouvons identifier des zones spécifiques nécessitant une attention particulière, offrant ainsi des indications précieuses pour optimiser la conception de la grille de capteurs.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmeca.239
Keywords: Structural health monitoring, Electromechanical impedance-based method, Damage detection and location, Sequential Gaussian simulation
Mots-clés : Surveillance de la santé des structures, Méthode basée sur l’impédance électromécanique, Détection et localisation des dommages, Simulation gaussienne séquentielle

Paulo Elias Carneiro Pereira 1; Stanley Washington Ferreira de Rezende 2; José dos Reis Vieira de Moura Júnior 3; Roberto Mendes Finzi Neto 2

1 School of Mechanical Engineering, Federal University of Uberlândia, 2121 João Naves de Ávila Av., Uberlândia, Brazil
2 School of Mechanical Engineering, Federal University of Uberlândia, 2121 João Naves de Ávila Av., Uberlândia, Brazil
3 Mathematics and Technology Institute, Federal University of Catalão, 1120 Dr. Lamartine Pinto de Avelar Av., Catalão, Brazil
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2024__352_G1_19_0,
     author = {Paulo Elias Carneiro Pereira and Stanley Washington Ferreira de Rezende and Jos\'e dos Reis Vieira de Moura J\'unior and Roberto Mendes Finzi Neto},
     title = {SGS method applied to damage location and~uncertainty modeling for sensor grid {in~the~ISHM}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {19--37},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {352},
     year = {2024},
     doi = {10.5802/crmeca.239},
     language = {en},
}
TY  - JOUR
AU  - Paulo Elias Carneiro Pereira
AU  - Stanley Washington Ferreira de Rezende
AU  - José dos Reis Vieira de Moura Júnior
AU  - Roberto Mendes Finzi Neto
TI  - SGS method applied to damage location and uncertainty modeling for sensor grid in the ISHM
JO  - Comptes Rendus. Mécanique
PY  - 2024
SP  - 19
EP  - 37
VL  - 352
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.239
LA  - en
ID  - CRMECA_2024__352_G1_19_0
ER  - 
%0 Journal Article
%A Paulo Elias Carneiro Pereira
%A Stanley Washington Ferreira de Rezende
%A José dos Reis Vieira de Moura Júnior
%A Roberto Mendes Finzi Neto
%T SGS method applied to damage location and uncertainty modeling for sensor grid in the ISHM
%J Comptes Rendus. Mécanique
%D 2024
%P 19-37
%V 352
%I Académie des sciences, Paris
%R 10.5802/crmeca.239
%G en
%F CRMECA_2024__352_G1_19_0
Paulo Elias Carneiro Pereira; Stanley Washington Ferreira de Rezende; José dos Reis Vieira de Moura Júnior; Roberto Mendes Finzi Neto. SGS method applied to damage location and uncertainty modeling for sensor grid in the ISHM. Comptes Rendus. Mécanique, Volume 352 (2024), pp. 19-37. doi : 10.5802/crmeca.239. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.239/

[1] V. Giurgiutiu Structural Health Monitoring with Piezoelectric Wafer Active Sensors, Academic Press, Waltham, 2014 | DOI

[2] A. N. Zagrai; V. Giurgiutiu Electromechanical impedance modeling, Encyclopedia of Structural Health Monitoring (C. Boller; F.-K. Chang; Y. Fujino, eds.), John Wiley & Sons, Chichester, 2009, p. 5 | DOI

[3] Q. S. S. Nomelini; J. W. Silva; C. A. Gallo; R. M. Finzi Neto; K. M. Tsuruta; J. R. V. Moura Jr Non-parametric inference applied to damage detection in the electromechanical impedance-based health monitoring, Int. J. Adv. Eng. Res. Sci., Volume 7 (2020) no. 9, pp. 73-79 | DOI

[4] I. I. C. Maruo; G. F. Giachero; V. Steffen Jr; R. M. Finzi Neto Electromechanical impedance – based structural health monitoring instrumentation system applied to aircraft structures and employing a multiplexed sensor array, J. Aerosp. Technol. Manag., Volume 7 (2015) no. 3, pp. 294-306 | DOI

[5] R. Finzi Neto; V. Steffen Jr; D. Rade; C. Gallo; L. Palomino A low-cost electromechanical impedance-based SHM architecture for multiplexed piezoceramic actuators, Struct. Health Monit., Volume 10 (2011) no. 4, pp. 391-402 | DOI

[6] S. W. F. de Rezende; B. P. Barella; J. R. V. Moura Jr; K. M. Tsuruta; A. A. Cavalini Jr; V. Steffen Jr ISHM for fault condition detection in rotating machines with deep learning models, J. Braz. Soc. Mech. Sci. Eng., Volume 45 (2023), 212 | DOI

[7] A. Cavalini Jr; R. Finzi Neto; V. Steffen Jr Impedance-based fault detection methodology for rotating machines, Struct. Health Monit., Volume 14 (2015) no. 3, pp. 228-240 | DOI

[8] J.-W. Kim; C. Lee; S. Park Damage localization for CFRP-debonding defects using piezoelectric SHM techniques, Res. Nondestruct. Eval., Volume 23 (2012) no. 4, pp. 183-196 | DOI

[9] O. Cherrier; P. Selva; V. Pommier-Budinger; F. Lachaud; J. Morlier Damage localization map using electromechanical impedance spectrums and inverse distance weighting interpolation: Experimental validation on thin composite structures, Struct. Health Monit., Volume 12 (2013) no. 4, pp. 311-324 | DOI

[10] B. A. de Castro; F. G. Baptista; F. Ciampa New imaging algorithm for material damage localisation based on impedance measurements under noise influence, Measurement, Volume 163 (2020), 107953 | DOI

[11] J. Zhu; X. Qing; X. Liu; Y. Wang Electromechanical impedance-based damage localization with novel signatures extraction methodology and modified probability-weighted algorithm, Mech. Syst. Signal Process., Volume 146 (2021), 107001 | DOI

[12] S. Sikdar; S. K. Singh; P. Malinowski; W. Ostachowicz Electromechanical impedance based debond localisation in a composite sandwich structure, J. Intell. Mater. Syst. Struct., Volume 33 (2022) no. 12, pp. 1487-1496 | DOI

[13] D. R. Gonçalves; J. R. V. Moura Jr; P. E. C. Pereira Monitoramento de integridade estrutural baseado em impedância eletromecânica utilizando o método de krigagem ordinária, Holos, Volume 36 (2020) no. 2, pp. 1-16 | DOI

[14] D. R. Gonçalves; J. R. V. Moura Jr; P. E. C. Pereira; M. V. A. Mendes; H. S. Diniz-Pinto Indicator kriging for damage position prediction by the use of electromechanical impedance-based structural health monitoring, C. R. Méc., Volume 349 (2021) no. 2, pp. 225-240 | DOI

[15] R. Soman; S. K. Singh; P. Malinowski Damage localization using electromechanical impedance technique based on inverse implementation, Struct. Health Monit., Volume 22 (2023) no. 5, pp. 3373-3384 | DOI

[16] L. Wang; B. Yuan; Z. Xu; Q. Sun Synchronous detection of bolts looseness position and degree based on fusing electro-mechanical impedance, Mech. Syst. Signal Process., Volume 174 (2022), 109068 | DOI

[17] X. Fan; J. Li Damage identification in plate structures using sparse regularization based electromechanical impedance technique, Sensors, Volume 20 (2020) no. 24, 7069 | DOI

[18] M. Richards; M. Ghanem; M. Osmond; Y. Guo; J. Hassard Grid-based analysis of air pollution data, Ecol. Model., Volume 194 (2006) no. 1, pp. 274-286 | DOI

[19] A. Martowicz; M. Rosiek Electromechanical impedance method, Advanced Structural Damage Dectection: From Theory to Engineering Applications (T. Stepinski; T. Uhl; W. Staszewski, eds.), John Wiley & Sons, Chichester, 2013, pp. 141-176 | DOI

[20] G. Park; H. Sohn; C. R. Farrar; D. J. Inman Overview of piezoelectric impedance-based health monitoring and path forward, Shock Vibr. Dig., Volume 35 (2003) no. 6, pp. 451-463 | DOI

[21] C. Liang; F. P. Sun; C. A. Rogers Coupled electro-mechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer, J. Intell. Mater. Syst. Struct., Volume 8 (1997) no. 4, pp. 335-343 | DOI

[22] S. Bhalla; C.-K. Soh Electro-mechanical impedance technique, Smart Materials in Structural Health Monitoring, Control and Biomechanics (C.-K. Soh; Y. Yang; S. Bhalla, eds.), Springer, Berlin, 2012, pp. 17-51 | DOI

[23] F. P. Sun; Z. Chaudhry; C. Liang; C. A. Rogers Truss structure integrity identification using PZT sensor-actuator, J. Intell. Mater. Syst. Struct., Volume 6 (1995) no. 1, pp. 134-139 | DOI

[24] V. Giurgiutiu; C. A. Rogers Recent advancements in the electromechanical (E/M) impedance method for structural health monitoring and NDE, Smart Structures and Materials 1998: Smart Structures and Integrated Systems (M. E. Regelbrugge, ed.), Volume 3329, International Society for Optics and Photonics, SPIE, San Diego, 1998, pp. 536-547 | DOI

[25] G. Matheron Principles of geostatistics, Econ. Geol., Volume 58 (1963) no. 8, pp. 1246-1266 | DOI

[26] G. Matheron Kriging, or polynomial interpolation procedures? A contribution to polemics in mathematical geology, Trans. Canad. Inst. Min. Metal., Volume 70 (1967), pp. 240-244

[27] G. Matheron The Theory of Regionalized Variables and its Applications, Les cahiers du Centre de Morphologie Mathématique de Fontainebleau, 05, École Nationale Supérieure des Mines de Paris, Paris, France, 1971

[28] G. Matheron The intrinsic random functions and their applications, Adv. Appl. Probab., Volume 5 (1973) no. 3, pp. 439-468 | DOI | MR | Zbl

[29] P. E. C. Pereira; M. N. Rabelo; C. C. Ribeiro; H. S. Diniz-Pinto Geological modeling by an indicator kriging approach applied to a limestone deposit in Indiara city – Goiás, REM - Int. Eng. J., Volume 70 (2017) no. 3, pp. 331-337 | DOI

[30] C. A. S. Oliveira; M. A. A. Bassani; J. F. C. L. Costa Application of covariance table for geostatistical modeling in the presence of an exhaustive secondary variable, J. Petroleum Sci. Eng., Volume 196 (2021), 108073 | DOI

[31] F. Ogunsanwo; V. Ozebo; O. Olurin; J. Ayanda; J. Coker; O. Sowole; B. Ogunsanwo; J. Olumoyegun; J. Olowofela Geostatistical analysis of uranium concentrations in North-Western part of Ogun State, Nigeria, J. Environ. Radioact., Volume 237 (2021), 106706 | DOI

[32] A. Tayebi; S. Kasmaeeyazdi; F. Tinti; R. Bruno Contributions from experimental geostatistical analyses for solving the cloud-cover problem in remote sensing data, Int. J. Appl. Earth Obs. Geoinf., Volume 118 (2023), 103236 | DOI

[33] J.-P. Chilès; P. Delfiner Geostatistics: Modeling Spatial Uncertainty, Wiley Series in Probability and Statistics, John Wiley & Sons, Hoboken, 2012 | DOI

[34] A. G. Journel; C. J. Huijbregts Mining Geostatistics, Academic Press Limited, London, 1978

[35] M. Abzalov Applied Mining Geology, Springer International Publishing AG, Cham, 2016 | DOI

[36] A. J. Sinclair; G. H. Blackwell Applied Mineral Inventory Estimation, Cambridge University Press, Cambridge, 2002 | DOI

[37] M. J. Pyrcz; C. V. Deutsch Geostatistical Reservoir Modeling, Oxford University Press, New York, 2014

[38] M. Armstrong Basic Linear Geostatistics, Springer, Heidelberg, 1998 | DOI

[39] E. H. Isaaks; R. M. Srivastava An Introduction to Applied Geostatistics, Oxford University Press, New York, 1989

[40] J. K. Yamamoto; P. M. B. Landim Geoestatística: Conceitos e Aplicações, Oficina de Textos, São Paulo, 2013

[41] M. E. Rossi; C. V. Deutsch Mineral Resource Estimation, Springer Science+Business Media, Dordrecht, 2014 | DOI

[42] C. Lantuéjoul Geostatistical Simulation: Models and Algorithms, Springer-Verlag, Heidelberg, 2002 | DOI

[43] J. Deutsch; M. Deutsch; R. Martin; W. Black; T. Acorn; R. Barnett; M. Hadavand Pygeostat, 2021 https://pypi.org/project/pygeostat/ (version 1.1.1, Centre for Computational Geostatistics)

[44] M. J. Pyrcz; H. Jo; A. Kupenko; W. Liu; A. E. Gigliotti; T. Salomaki; J. Santos GeostatsPy Python Package, 2021 https://pypi.org/project/geostatspy/ (version 0.0.26, Texas Center for Data Analytics and Geostatistics)

[45] A. Falade; J. Amigun; Y. Makeen; O. Kafisanwo Characterization and geostatistical modeling of reservoirs in ‘Falad’ field, Niger Delta, Nigeria, J. Pet. Explor. Prod. Technol., Volume 12 (2022), pp. 1353-1369 | DOI

[46] A. Ali; A. Farid; T. Hassan 3D static reservoir modelling to evaluate petroleum potential of Goru C-Interval sands in Sawan Gas Field, Pakistan, Episodes, Volume 46 (2023) no. 1, pp. 1-18 | DOI

[47] X. Wang; Q. Xia Depiction of different alteration zones using fractal and simulation algorithm in Pulang Porphyry Copper Deposit, Southwest China, Nat. Resour. Res., Volume 31 (2022), pp. 1943-1961 | DOI

[48] S. Karami; M. Jalali; A. Karami; H. Katibeh; A. Marj Evaluating and modeling the groundwater in Hamedan plain aquifer, Iran, using the linear geostatistical estimation, sequential Gaussian simulation, and turning band simulation approaches, Model. Earth Syst. Environ., Volume 8 (2022), pp. 3555-3576 | DOI

[49] S. Özen; C. Yesilkanat; M. Özen; A. Başsari; H. Taşkin Health risk assessment of soil trace elements using the Sequential Gaussian Simulation approach, Environ. Sci. Pollut. Res., Volume 29 (2022), pp. 72683-72698 | DOI

[50] P. Agyeman; L. Borůvka; N. Kebonye; V. Khosravi; K. John; O. Drabek; V. Tejnecky Prediction of the concentration of cadmium in agricultural soil in the Czech Republic using legacy data, preferential sampling, Sentinel-2, Landsat-8, and ensemble models, J. Environ. Manage., Volume 330 (2023), 117194 | DOI

Cited by Sources:

Comments - Policy