Comptes Rendus
Article de recherche
Fitts Law as a Restrained Random Walk
[La loi de Fitts comme une marche aléatoire restreinte]
Comptes Rendus. Mécanique, Volume 352 (2024), pp. 135-142.

La loi de Fitts, l’une des rares relations quantitatives en psychologie, décrit le temps nécessaire à un être humain pour viser et atteindre une cible d’une taille donnée, à partir d’une position éloignée donnée. Nous proposons ici une nouvelle interprétation de cette loi, qui ne fait pas appel à une discrétisation de l’espace et du temps comme dans la représentation originale de Fitts invoquant une théorie de l’information, mais qui implique une simple marche aléatoire restreinte sur un continuum, dans l’espace et dans le temps. Nous ne nous contentons pas de prédire que le temps de pointage est proportionnel au logarithme de la distance de départ par rapport à la taille de la cible (ce qui est la loi de Fitts), mais nous décrivons également probabilité de présence complète du pointeur sur son trajet jusqu’à la destination. En particulier, nous quantifions l’efficacité de la superposition du pointeur avec la cible à partir de la comparaison d’une nouvelle échelle de longueur intrinsèque au mouvement, avec la taille de la cible.

Fitts law, one of the rare quantitative relations in psychology, describes the time it takes for a human being to aim at and hit a target of a given size, starting from a given remote position. We provide here a new interpretation of this law, not invoking a discretization of space and time as in the original information theory representation of Fitts, but involving a simple restrained random walk on a continuum, in space and time. We not only predict that the pointing time is proportional to the logarithm of the starting distance relative to the target size (which is Fitts law), but also describe the complete probability of presence of the pointer in its route to destination. In particular, we quantify the pointer large time overlapping efficiency with the target from the comparison of a new length-scale intrinsic to the motion, with the target size.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.250
Emmanuel Villermaux 1

1 Aix Marseille Université, CNRS, Centrale Marseille, IRPHE, Marseille, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2024__352_G1_135_0,
     author = {Emmanuel Villermaux},
     title = {Fitts {Law} as a {Restrained} {Random} {Walk}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {135--142},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {352},
     year = {2024},
     doi = {10.5802/crmeca.250},
     language = {en},
}
TY  - JOUR
AU  - Emmanuel Villermaux
TI  - Fitts Law as a Restrained Random Walk
JO  - Comptes Rendus. Mécanique
PY  - 2024
SP  - 135
EP  - 142
VL  - 352
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.250
LA  - en
ID  - CRMECA_2024__352_G1_135_0
ER  - 
%0 Journal Article
%A Emmanuel Villermaux
%T Fitts Law as a Restrained Random Walk
%J Comptes Rendus. Mécanique
%D 2024
%P 135-142
%V 352
%I Académie des sciences, Paris
%R 10.5802/crmeca.250
%G en
%F CRMECA_2024__352_G1_135_0
Emmanuel Villermaux. Fitts Law as a Restrained Random Walk. Comptes Rendus. Mécanique, Volume 352 (2024), pp. 135-142. doi : 10.5802/crmeca.250. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.250/

[1] D. Beamish; S. Ali Bhatti; I. S. MacKenzie; J. Wu Fifty years later: a neurodynamic explanation of Fitts’ law, J. R. Soc. Interface, Volume 3 (2006), pp. 649-654 | DOI

[2] G. K. Batchelor Small-scale Variation of Convected Quantities Like Temperature in a Turbulent Fluid. Part 1. General discussion and the case of small conductivity, J. Fluid Mech., Volume 5 (1959), pp. 113-133 | DOI | Zbl

[3] H. Bergson Essai sur les données immédiates de la conscience, Ph. D. Thesis, Faculté des Lettres de Paris, France (1889)

[4] L. Brillouin Science and information theory, Academic Press Inc., 1956 | Zbl

[5] S. Condamin; O. Bénichou; M. Moreau First-Passage Times for Random Walks in Bounded Domains, Phys. Rev. Lett., Volume 95 (2005), 260601 | DOI

[6] Y. Cha; R. Myung Extended Fitts’ law for 3D pointing tasks using 3D target arrangements, Int. J. Ind. Ergon., Volume 43 (2013), pp. 350-355 | DOI

[7] J.-R.-L. Delboeuf Eléments de psychophysique générale & spéciale, Librairie Germer Baillière et Cie, Paris, 1883

[8] P. Ehrenfest; T. Ehrenfest Über zwei bekante eiwände gegen das Boltzmannsche H-Theorem, Phys. Zeit., Volume 8 (1907) no. 9, pp. 311-314

[9] G. T. Fechner Elemente der Psychophysik, Druck und Verlag von Breitkopf und Hartel, Leipzig, 1860

[10] P. M. Fitts The information capacity of the human motor system in controlling the amplitude of movement, J. Exp. Psychol.: Gen., Volume 47 (1954) no. 6, pp. 381-391 | DOI

[11] P. M. Fitts; M. I. Posner Human Performance, Basic concepts in psychology series, Prentice/Hall International Inc., London, 1973

[12] S. Goodman; A. Haufler; J. K. Shim; B. Hatfield Regular and random components in Aiming-Point trajectory during rifle aiming and shooting, J. Mot. Behav., Volume 41 (2009) no. 4, pp. 367-382 | DOI

[13] R. H. Kraichnan Convection of a passive scalar by a quasi-uniform random field, J. Fluid Mech., Volume 64 (1974) no. 4, pp. 737-762 | DOI | MR | Zbl

[14] J. W. Lord Rayleigh Dynamical Problems in illustration of the theory of gases, Philos. Mag., Volume 32 (1891), pp. 424-445 | DOI

[15] C. L. MacKenzie; R. G. Mareniuk; C. Dugas; D. Liske; B. Eickmeier Three-dimensional Movement Trajectories in Fitts’ task: Implications for control, Q. J. Exp. Psychol., Volume 39A (1987), pp. 629-647 | DOI

[16] R. Plamondon; A. M. Alimi Speed/accuracy trade-offs in target-directed movements, Behav. Brain Sci., Volume 20 (1997), pp. 279-349 | DOI

[17] W. E. Ranz Application of a Stretch Model to Mixing, Diffusion and Reaction in Laminar and Turbulent Flows, AIChE J., Volume 25 (1979) no. 1, pp. 41-47 | DOI

[18] S. Redner A guide to first-passage processes, Cambridge University Press, 2001 | DOI | Zbl

[19] D. A. Rosenbaum Human Motor Control, Academic Press Inc., 2009

[20] E. Villermaux Mixing Versus Stirring, Annu. Rev. Fluid Mech., Volume 51 (2019), pp. 245-273 | DOI | Zbl

[21] K. W. F. Von Kohlrausch; E. Schrödinger Das Ehrenfestsche modell der H-Kurve, Phys. Zeit., Volume 27 (1926), pp. 306-313

[22] M. Venkadesan; L. Mahadevan Optimal strategies for throwing accurately, R. Soc. Open Sci., Volume 4 (2017), 170136 | DOI | MR | Zbl

[23] M. Vergassola; E. Villermaux; B. I. Shraiman Infotaxis as a strategy for searching without gradients, Nature, Volume 445 (2007), pp. 406-409 | DOI

[24] R. S. Woodworth The Accuracy of Voluntary Movement, Psychological Review: Monograph Supplements, Volume III (1899) no. 3, pp. i-114 | DOI

[25] V. M. Zatsiorsky; A. V. Aktov Blomechanics of highly precise movements: the aiming process in air rifle shooting, J. Biomech., Volume 23 (1990) no. 1, pp. 35-41 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

The outcomes of measurements in the de Broglie–Bohm theory

Geneviève Tastevin; Franck Laloë

C. R. Phys (2021)


Underwater acoustic positioning systems as tool for Posidonia oceanica beds survey

Pierre Descamp; Gérard Pergent; Laurent Ballesta; ...

C. R. Biol (2005)


Forest tree responses to extreme drought and some biotic events: Towards a selection according to hazard tolerance?

Nathalie Bréda; Vincent Badeau

C. R. Géos (2008)