Fitts law, one of the rare quantitative relations in psychology, describes the time it takes for a human being to aim at and hit a target of a given size, starting from a given remote position. We provide here a new interpretation of this law, not invoking a discretization of space and time as in the original information theory representation of Fitts, but involving a simple restrained random walk on a continuum, in space and time. We not only predict that the pointing time is proportional to the logarithm of the starting distance relative to the target size (which is Fitts law), but also describe the complete probability of presence of the pointer in its route to destination. In particular, we quantify the pointer large time overlapping efficiency with the target from the comparison of a new length-scale intrinsic to the motion, with the target size.
La loi de Fitts, l’une des rares relations quantitatives en psychologie, décrit le temps nécessaire à un être humain pour viser et atteindre une cible d’une taille donnée, à partir d’une position éloignée donnée. Nous proposons ici une nouvelle interprétation de cette loi, qui ne fait pas appel à une discrétisation de l’espace et du temps comme dans la représentation originale de Fitts invoquant une théorie de l’information, mais qui implique une simple marche aléatoire restreinte sur un continuum, dans l’espace et dans le temps. Nous ne nous contentons pas de prédire que le temps de pointage est proportionnel au logarithme de la distance de départ par rapport à la taille de la cible (ce qui est la loi de Fitts), mais nous décrivons également probabilité de présence complète du pointeur sur son trajet jusqu’à la destination. En particulier, nous quantifions l’efficacité de la superposition du pointeur avec la cible à partir de la comparaison d’une nouvelle échelle de longueur intrinsèque au mouvement, avec la taille de la cible.
Revised:
Accepted:
Published online:
Emmanuel Villermaux 1
@article{CRMECA_2024__352_G1_135_0, author = {Emmanuel Villermaux}, title = {Fitts {Law} as a {Restrained} {Random} {Walk}}, journal = {Comptes Rendus. M\'ecanique}, pages = {135--142}, publisher = {Acad\'emie des sciences, Paris}, volume = {352}, year = {2024}, doi = {10.5802/crmeca.250}, language = {en}, }
Emmanuel Villermaux. Fitts Law as a Restrained Random Walk. Comptes Rendus. Mécanique, Volume 352 (2024), pp. 135-142. doi : 10.5802/crmeca.250. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.250/
[1] Fifty years later: a neurodynamic explanation of Fitts’ law, J. R. Soc. Interface, Volume 3 (2006), pp. 649-654 | DOI
[2] Small-scale Variation of Convected Quantities Like Temperature in a Turbulent Fluid. Part 1. General discussion and the case of small conductivity, J. Fluid Mech., Volume 5 (1959), pp. 113-133 | DOI | Zbl
[3] Essai sur les données immédiates de la conscience, Ph. D. Thesis, Faculté des Lettres de Paris, France (1889)
[4] Science and information theory, Academic Press Inc., 1956 | Zbl
[5] First-Passage Times for Random Walks in Bounded Domains, Phys. Rev. Lett., Volume 95 (2005), 260601 | DOI
[6] Extended Fitts’ law for 3D pointing tasks using 3D target arrangements, Int. J. Ind. Ergon., Volume 43 (2013), pp. 350-355 | DOI
[7] Eléments de psychophysique générale & spéciale, Librairie Germer Baillière et Cie, Paris, 1883
[8] Über zwei bekante eiwände gegen das Boltzmannsche H-Theorem, Phys. Zeit., Volume 8 (1907) no. 9, pp. 311-314
[9] Elemente der Psychophysik, Druck und Verlag von Breitkopf und Hartel, Leipzig, 1860
[10] The information capacity of the human motor system in controlling the amplitude of movement, J. Exp. Psychol.: Gen., Volume 47 (1954) no. 6, pp. 381-391 | DOI
[11] Human Performance, Basic concepts in psychology series, Prentice/Hall International Inc., London, 1973
[12] Regular and random components in Aiming-Point trajectory during rifle aiming and shooting, J. Mot. Behav., Volume 41 (2009) no. 4, pp. 367-382 | DOI
[13] Convection of a passive scalar by a quasi-uniform random field, J. Fluid Mech., Volume 64 (1974) no. 4, pp. 737-762 | DOI | MR | Zbl
[14] Dynamical Problems in illustration of the theory of gases, Philos. Mag., Volume 32 (1891), pp. 424-445 | DOI
[15] Three-dimensional Movement Trajectories in Fitts’ task: Implications for control, Q. J. Exp. Psychol., Volume 39A (1987), pp. 629-647 | DOI
[16] Speed/accuracy trade-offs in target-directed movements, Behav. Brain Sci., Volume 20 (1997), pp. 279-349 | DOI
[17] Application of a Stretch Model to Mixing, Diffusion and Reaction in Laminar and Turbulent Flows, AIChE J., Volume 25 (1979) no. 1, pp. 41-47 | DOI
[18] A guide to first-passage processes, Cambridge University Press, 2001 | DOI | Zbl
[19] Human Motor Control, Academic Press Inc., 2009
[20] Mixing Versus Stirring, Annu. Rev. Fluid Mech., Volume 51 (2019), pp. 245-273 | DOI | Zbl
[21] Das Ehrenfestsche modell der H-Kurve, Phys. Zeit., Volume 27 (1926), pp. 306-313
[22] Optimal strategies for throwing accurately, R. Soc. Open Sci., Volume 4 (2017), 170136 | DOI | MR | Zbl
[23] Infotaxis as a strategy for searching without gradients, Nature, Volume 445 (2007), pp. 406-409 | DOI
[24] The Accuracy of Voluntary Movement, Psychological Review: Monograph Supplements, Volume III (1899) no. 3, pp. i-114 | DOI
[25] Blomechanics of highly precise movements: the aiming process in air rifle shooting, J. Biomech., Volume 23 (1990) no. 1, pp. 35-41 | DOI
Cited by Sources:
Comments - Policy