Comptes Rendus
Note
CFD analysis of operating condition effects on optimum nozzle exit position of a supersonic ejector using the refrigerant R134a
Comptes Rendus. Mécanique, Volume 349 (2021) no. 1, pp. 189-202.

In this work, the computational fluid dynamics technique is employed to study operating condition effects on the optimum value of an important parameter called the nozzle exit position (NXP) for an ejector design. This ejector uses the gas R134a as the working fluid. Numerical tests are carried out using a combination of the REFPROP 7.0 database state equation and the high-Reynolds version of the SST kω model. Good agreement in terms of entrainment ratio and critical temperature is obtained between computed values and measurements. In addition, numerical results indicate that the optimum NXP maximizes ejector performance and is highly dependent on operating conditions.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.60
Mots clés : Optimum NXP, Operating conditions, R134a, Entrainment ratio, Refrigeration
Ali Hadj 1 ; Mohammed Boulenouar 2

1 Laboratoire des Sciences et Ingénierie Maritime (LSIM), Department of Maritime Engineering, Faculty of Mechanical Engineering, El Mnaouar, BP 1505, Bir El Djir 31000, USTO Oran, Algeria
2 Laboratoire des Sciences et Ingénierie Maritime (LSIM), Department of Maritime Engineering, Faculty of Mechanical Engineering, El Mnaouar, BP 1505, Bir El Djir 31000 USTO Oran, Algeria
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2021__349_1_189_0,
     author = {Ali Hadj and Mohammed Boulenouar},
     title = {CFD analysis of operating condition effects on optimum nozzle exit position of a supersonic ejector using the refrigerant {R134a}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {189--202},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {349},
     number = {1},
     year = {2021},
     doi = {10.5802/crmeca.60},
     language = {en},
}
TY  - JOUR
AU  - Ali Hadj
AU  - Mohammed Boulenouar
TI  - CFD analysis of operating condition effects on optimum nozzle exit position of a supersonic ejector using the refrigerant R134a
JO  - Comptes Rendus. Mécanique
PY  - 2021
SP  - 189
EP  - 202
VL  - 349
IS  - 1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.60
LA  - en
ID  - CRMECA_2021__349_1_189_0
ER  - 
%0 Journal Article
%A Ali Hadj
%A Mohammed Boulenouar
%T CFD analysis of operating condition effects on optimum nozzle exit position of a supersonic ejector using the refrigerant R134a
%J Comptes Rendus. Mécanique
%D 2021
%P 189-202
%V 349
%N 1
%I Académie des sciences, Paris
%R 10.5802/crmeca.60
%G en
%F CRMECA_2021__349_1_189_0
Ali Hadj; Mohammed Boulenouar. CFD analysis of operating condition effects on optimum nozzle exit position of a supersonic ejector using the refrigerant R134a. Comptes Rendus. Mécanique, Volume 349 (2021) no. 1, pp. 189-202. doi : 10.5802/crmeca.60. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.60/

[1] Z. Aidoun; K. Ameur; M. Falsafioon; M. Badache Current advances in ejector modeling, experimentation and applications for refrigeration and heat pumps. Part 1: single-phase ejectors, Inventions, Volume 4 (2019) no. 15, pp. 1-73

[2] C. Metin; O. Gök; A. U. Atmaca; A. Erek Numerical investigation of the flow structures inside mixing section of the ejector, Energy, Volume 166 (2019), pp. 1216-1228 | DOI

[3] G. Besagni; R. Mereu; F. Inzoli Ejector refrigeration: a comprehensive review renewable and sustainable, Energy Rev., Volume 53 (2016), pp. 373-407

[4] Y. Han; L. Guo; X. Wang; A. C. Y. Yuen; C. Li; R. Cao; H. Liu; T. B. Y. Chen; J. Tu; G. H. Yeoh A steam ejector refrigeration system powered by engine combustion waste heat: Part 2. Understanding the nature of the shock wave structure: Part 2. Characterization of the internal flow structure, Appl. Sci., Volume 9 (2019) no. 4435, pp. 1-16

[5] W. Fu; Z. Liu; Y. Li; H. Wu; Y. Tang Numerical study for the influences of primary steam nozzle distance and mixing chamber throat diameter on steam ejector performance, Int. Therm. Sci., Volume 132 (2018), pp. 509-516 | DOI

[6] A. S. Ramesh; S. J. Sekhar Analytical and numerical studies of a steam ejector on the effect of nozzle exit position and suction chamber angle to fluid flow and system performance, J. Appl. Fluid Mech., Volume 10 (2017) no. 1, pp. 369-378

[7] M. Falsafioon; Z. Aidoun; K. Ameur Numerical investigation on the effects of internal flow structure on ejector performance, J. Appl. Fluid Mech., Volume 12 (2019) no. 6, pp. 2003-2015

[8] ESDU Ejector and jet pump (data item 86030, ESDU International Ltd, London, UK, 1985)

[9] B. Rifat; S. A. Omer CFD modelling and experimental investigation of an ejector refrigeration system using methanol as the working fluid, Int. J. Energy Res., Volume 25 (2001), pp. 115-128 | DOI

[10] I. W. Eames; A. E. Ablwaifa; V. Petrenko Results of an experimental study of an advanced jet-pump refrigerator operating with R245fa, Appl. Therm. Eng., Volume 27 (2007), pp. 2833-2840 | DOI

[11] W. Zhu; W. Cai; C. Wen; Y. Li Numerical investigation of geometry parameters for design of high-performance ejectors, Appl. Therm. Eng., Volume 29 (2009), pp. 898-905 | DOI

[12] J. Yan; W. Cai; Y. Li Geometry parameters effect for air-cooled ejector cooling systems with R134a refrigerant, Renew. Energy, Volume 46 (2012), pp. 155-163 | DOI

[13] C. Lin; W. Cai; Y. Li; J. Yan; Y. Hu; K. Giridharan Numerical investigation of geometry parameters for pressure recovery of an adjustable ejector in multi-evaporator refrigeration system, Appl. Therm. Eng., Volume 61 (2013), pp. 649-656 | DOI

[14] V. V. Nguyen; S. Varga; J. Soares; V. Dvorak; A. C. Oliveira Applying a variable geometry ejector in a solar ejector refrigeration system, Int. J. Refrig., Volume 113 (2020), pp. 187-195 | DOI

[15] J. Dong; H. B. Ma Study of optimum Nozzle Exit Position (NXP) in a steam ejector refrigeration system, Am. Inst. Phys. Conf. Ser., Volume 1547 (2013), pp. 115-123

[16] V. Kumar; P. M. V. Subbarao; G. Singha Effect of nozzle exit position (NXP) on variable area mixing ejector, SN Appl. Sci., Volume 1 (2019) no. 11, 1473 | DOI

[17] P. R. Pereira; S. Varga; A. C. Oliveira; J. Soares Development and performance of an advanced ejector cooling system for a sustainable built environment, Front. Mech. Eng., Volume 1 (2015) no. 7, pp. 1-12

[18] A. S. Ramesh; S. J. Sekhar Experimental and numerical investigations on the effect of suction chamber angle and nozzle exit position of a steam-jet ejector, Energy, Volume 164 (2018), pp. 1097-1113 | DOI

[19] J. García del Valle; J. J. Saiz; R. F. Castro; A. J. San Jose An experimental investigation of a R134a ejector refrigeration system, Int. J. Refrig., Volume 45 (2014), pp. 105-113 | DOI

[20] Y. Bartosiewicz; Z. Aidoun; P. Desevaux; Y. Mercadier CFD experiments integration in the evaluation of six turbulence models for supersonic ejector modeling, Conference Proc., Integrating CFD and Experiments, 2003 (Glasgow, UK)

[21] J. Gagan; K. Smierciew; D. Butrymowicz; J. Karwacki Comparative study of turbulence models in application to gas ejectors, Int. J. Therm. Sci., Volume 78 (2014), pp. 9-15 | DOI

[22] ANSYS Inc. ANSYS FLUENT, Theory Guide Release 14.5, 2012

[23] N. Sharifi; M. Boroomand An investigation of thermo-compressor design by analysis and experiment: Part 1. Validation of the numerical method, Energy Convers. Manage., Volume 69 (2013), pp. 217-227 | DOI

[24] Y. Han; X. Wang; H. Sun; G. Zhang; L. Guo; J. Tu CFD simulation on the boundary layer separation in the steam ejector and its influence on the pumping performance, Energy, Volume 167 (2019), pp. 469-483 | DOI

[25] G. Besagni; F. Inzoli Computational fluid-dynamics modeling of supersonic ejectors: screening of turbulence modeling approaches, Appl. Therm. Eng., Volume 117 (2017), pp. 122-144 | DOI

[26] R. Tillner-Roth; H. D. Baehr An international standard formulation for the thermodynamic properties of 1,1,1,2-tetrafluoroethane (HFC-134a) for temperatures from 170 K to 455 K and Pressures up to 70 MPa, J. Phys. Chem. Ref. Data, Volume 23 (1994) no. 5, pp. 657-729 | DOI

[27] Y. A. Cengel; J. M. Cimbala Fluid Mechanics: Fundamentals and Applications, Introduction to Computational Fluid Dynamics, McGraw-Hill, New York, USA, 2006

[28] K. Matsuo; Y. Miyazato; H. D. Kim Shock train and pseudo-shock phenomena in internal gas flows, Prog. Aerosp. Sci., Volume 35 (1999), pp. 33-100 | DOI

[29] F. Riaz; P. S. Lee; S. K. Chou Thermal modelling and optimization of low-grade waste heat driven ejector refrigeration system incorporating a direct ejector model, Appl. Therm. Eng., Volume 167 (2020), 114710 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

A century of wind tunnels since Eiffel

Bruno Chanetz

C. R. Méca (2017)


An entrainment model for the turbulent jet in a coflow

Nicolas Enjalbert; David Galley; Laurent Pierrot

C. R. Méca (2009)


Integrating medicinal plants extraction into a high-value biorefinery: An example of Artemisia annua L.

Alexei Lapkin; Eba Adou; Benhilda N. Mlambo; ...

C. R. Chim (2014)