Comptes Rendus
Short paper
Analysis on mechanical properties and evolution of mesostructure of soil–rock mixture samples from contact network perspective
Comptes Rendus. Mécanique, Volume 349 (2021) no. 1, pp. 83-102.

Based on discrete element method (DEM), three kinds of soil–rock mixture (SRM) models with different coarse particle contents were established and triaxial compression tests were carried out. The results show that the force chains in the particle system playing the main bearing role need more lateral supports, which results in the contact with a higher coordination number and often bear larger contact force. The relationship between the contact’s carrying capacity and the coordination number can be fit by a quadric surface. Taking the fit quadric surface as the capacity function, the network-flow model of force transfer can be constructed to quantify the force transfer ability of a contact network. By connecting the maximum flow in the network with the hardening parameter of the unified hardening model, the stress–strain relationship of SRM can be predicted to some extent, which lays a basis for formulating micro–macro constitutive model for granular materials.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmeca.73
Keywords: Granular material, Triaxial compression, Contact network, Critical state, Force chain

Ran Xu 1; Enlong Liu 2, 3; Huilin Xing 4

1 Institute of Disaster Management and Reconstruction, Sichuan Univ., Chengdu 610207, China
2 Northwest Institute of Eco-Environment and Resources, State Key Laboratory of Frozen Soil Engineering, Chinese Academy of Sciences, Lanzhou 730000, China
3 State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan Univ., Chengdu 610065, China
4 Earth Systems Science Computational Centre (ESSCC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2021__349_1_83_0,
     author = {Ran Xu and Enlong Liu and Huilin Xing},
     title = {Analysis on mechanical properties and evolution of mesostructure of soil{\textendash}rock mixture samples from contact network perspective},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {83--102},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {349},
     number = {1},
     year = {2021},
     doi = {10.5802/crmeca.73},
     language = {en},
}
TY  - JOUR
AU  - Ran Xu
AU  - Enlong Liu
AU  - Huilin Xing
TI  - Analysis on mechanical properties and evolution of mesostructure of soil–rock mixture samples from contact network perspective
JO  - Comptes Rendus. Mécanique
PY  - 2021
SP  - 83
EP  - 102
VL  - 349
IS  - 1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.73
LA  - en
ID  - CRMECA_2021__349_1_83_0
ER  - 
%0 Journal Article
%A Ran Xu
%A Enlong Liu
%A Huilin Xing
%T Analysis on mechanical properties and evolution of mesostructure of soil–rock mixture samples from contact network perspective
%J Comptes Rendus. Mécanique
%D 2021
%P 83-102
%V 349
%N 1
%I Académie des sciences, Paris
%R 10.5802/crmeca.73
%G en
%F CRMECA_2021__349_1_83_0
Ran Xu; Enlong Liu; Huilin Xing. Analysis on mechanical properties and evolution of mesostructure of soil–rock mixture samples from contact network perspective. Comptes Rendus. Mécanique, Volume 349 (2021) no. 1, pp. 83-102. doi : 10.5802/crmeca.73. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.73/

[1] X. Wen-Jie; X. Qiang; H. Rui-Lin Study on the shear strength of soil–rock mixture by large scale direct shear test, Int. J. Rock Mech. Min. Sci., Volume 48 (2011) no. 8, pp. 1235-1247 | DOI

[2] J. Tian; E. Liu; L. Jiang; X. Jiang; Y. Sun; R. Xu Influence of particle shape on the microstructure evolution and the mechanical properties of granular materials, C. R. Méc., Volume 346 (2018) no. 6, pp. 460-476 | DOI

[3] J. Xiaoqiong; L. Enlong; J. Lian et al. Evolution of meso-structures and mechanical properties of granular materials under triaxial compression state fromcomplex network perspective, Granul. Matter, Volume 20 (2018) no. 3, 54

[4] J. Lian; L. Enlong; T. Jianqiu et al. Effects of inter-particle frictional coefficients on evolution of contact networks in landslide process, Engineering, Volume 9 (2017), pp. 917-936

[5] S. Yagiz Brief note on the influence of shape and percentage of gravel on the shear strength of sand and gravel mixtures, Bull. Eng. Geol. Environ., Volume 60 (2001) no. 4, pp. 321-323 | DOI

[6] T. Kokusho; T. Hara; R. Hiraoka Undrained shear strength of granular soils with different particle gradations, J. Geotech. Geoenviron. Eng., Volume 130 (2004) no. 6, pp. 621-629 | DOI

[7] L. E. Vallejo Interpretation of the limits in shear strength in binary granular mixtures, Can. Geotech. J., Volume 38 (2001) no. 5, pp. 1097-1104 | DOI

[8] A. Hamidi; M. Alizadeh; S. M. Soleimani Effect of particle crushing on shear strength and dilation characteristics of sand-gravel mixtures, Int J. Civil Eng., Volume 7 (2009) no. 1, pp. 61-71

[9] W. J. Xu; Z. Q. Yue; R. L. Hu Study on the mesostructure and mesomechanical characteristics of the soil–rock mixture using digital image processing based finite element method, Int. J. Rock Mech. Min. Sci., Volume 45 (2008) no. 5, pp. 749-762 | DOI

[10] Y. Ju; H. F. Sun; M. X. Xing; X. F. Wang; J. T. Zheng Numerical analysis of the failure process of soil–rock mixtures through computed tomography and PFC3D models, Int. J. Coal Sci. Technol., Volume 5 (2018) no. 2, pp. 126-141 | DOI

[11] J. He; X. Li; S.-D. Li; J.-L. Gu Numerical study of rock–soil aggregate by discrete element modeling, Sixth International Conference on Fuzzy Systems and Knowledge Discovery (2009), pp. 565-569 | DOI

[12] F. Radjai; D. E. Wolf; M. Jean et al. Bimodal character of stress transmission in granular packings, Phys. Rev. Lett., Volume 80 (1998) no. 1, pp. 61-64 | DOI

[13] J. F. Peters; M. Muthuswamy; J. Wibowo et al. Characterization of force chains in granular material, Phys. Rev. E, Volume 72 (2005) no. 4, 041307 | DOI

[14] A. Tordesillas; D. M. Walker; Q. Lin Force cycles and force chains, Phys. Rev. E, Volume 81 (2010) no. 1, 011302 | DOI

[15] D. M. Walker; A. Tordesllas Topological evolution in dense granularmaterials:a complex networks perspective, Int. J. Solids Struct., Volume 47 (2010) no. 5, pp. 624-639 | DOI

[16] A. Tordesillas; S. T. Tobin; M. Cil et al. Network flow model of force transmission in unbonded and bonded granular media, Phys. Rev. E, Volume 91 (2015) no. 6, 062204 | DOI

[17] P. A. Cundall; O. D. L. Strack Discussion: A discrete numerical model for granular assemblies, Géotechnique, Volume 30 (1980) no. 3, pp. 331-336 | DOI

[18] J. Kozicki; F. V. Donze YADE-OPEN DEM: an open-source software using a discrete element method to simulate granular material, Eng. Comput., Volume 26 (2009) no. 7-8, pp. 786-805 | DOI | Zbl

[19] J. Kozicki; F. V. Donze A new open-source software developed for numerical simulations using discrete modeling methods, Comput. Methods Appl. Mech. Eng., Volume 197 (2008) no. 49-50, pp. 4429-4443 | DOI | Zbl

[20] E. Medley; E. S. Lindquist The engineering significance of the scale-independence of some Franciscan mélanges in California, USA 35th U. S. Symposium (1995), pp. 907-914

[21] L. Scholtes; B. Chareyre; F. Nicot et al. Micromechanics of granular materials with capillary effects, Int. J. Eng. Sci., Volume 47 (2009) no. 1, pp. 64-75 | DOI | MR | Zbl

[22] F. da Cruz; S. Emam; M. Prochnow et al. Rheophysics of dense granular materials: Discrete simulation of plane shear flows, Phys. Rev. E, Volume 72 (2005) no. 2, 021309 | DOI

[23] J. C. Lopera Perez; C. Y. Kwok; C. OŒSullivan et al. Assessing the quasi-static conditions for shearing in granular media within the critical state soil mechanics framework, Soils Found., Volume 56 (2016), pp. 152-159 | DOI

[24] G. Yan; H. S. Yu; G. Mcdowell Simulation of granular material behaviour using DEM, Proc. Earth Planet. Sci., Volume 1 (2009) no. 1, pp. 598-605 | DOI

[25] S. Qi-cheng; X. Hai-li; L. Jian-guo; J. Feng Skeleton and force chain network in static granular material, Rock Soil Mech., Volume 30 (2009), pp. 83-87

[26] H. Zhu; F. Nicot; F. Darve Meso-structure organization in two-dimensional granular materials along biaxial loading path, Int. J. Solids Struct., Volume 96 (2016), pp. 25-37 | DOI

[27] L. Zhang; Y. J. Wang; J. Zhang Force-chain distributions in granular systems, Phys. Rev. E, Volume 89 (2014) no. 1, 012203 | DOI

[28] A. Tordesillas; A. Cramer; D. M. Walker Minimum cut and shear bands, AIP Conf. Proc., Volume 1542 (2013) no. 1, pp. 507-510 | DOI

[29] Q. Lin; A. Tordesillas Towards an optimization theory for deforming dense granular materials: Minimum cost maximum flow solutions, J. Ind. Manag. Optim., Volume 10 (2014) no. 1, pp. 337-362 | MR | Zbl

[30] R. K. Ahuja; T. L. Magnanti; J. B. Orlin Network flows: theory, algorithms and applications, J. Oper. Res. Soc., Volume 45 (1993) no. 11, pp. 791-796 | Zbl

[31] K. H. Roscoe; A. Thurairajah; A. N. Schofield Yielding of clays in states wetter than critical, Géotechnique, Volume 13 (1963) no. 3, pp. 211-240 | DOI

[32] K. H. Roscoe; A. N. Burland On the Generalized Behaviour of “Wet” Clay (J. Heyman; F. Leckie, eds.), Cambridge University Press, London, 1968, pp. 535-609 | Zbl

[33] Y. P. Yao; W. Hou; A. N. Zhou UH model: three-dimensional unified hardening model for overconsolidated clays, Geotechnique, Volume 59 (2009) no. 5, pp. 451-469 | DOI

[34] Y. P. Yao; D. A. Sun; T. Luo A critical state model for sands dependent on stress and density, Int. J. Numer. Anal. Meth. Geomech., Volume 28 (2004) no. 4, pp. 323-337 | DOI | Zbl

[35] R. Verdugo; K Ishihara The steady state of sandy soils, Soil Found., Volume 36 (1996), pp. 81-91 | DOI

[36] K. Ishihara Liquefaction and flow failure during earthquakes, Géotechnique, Volume 43 (1996) no. 3, pp. 351-415 | DOI | MR

[37] Y. P. Yao; L. Liu; T. Luo UH model for sands (in Chinese), Chinese J. Geotech. Eng., Volume 38 (2016), pp. 2147-2153

Cited by Sources:

Comments - Policy