Comptes Rendus
Note
Correlation between the toroidal modes of an elastic sphere and the viscosity of liquids
Comptes Rendus. Mécanique, Volume 349 (2021) no. 1, pp. 179-188.

Vibration characteristics of elastic nanostructures embedded in fluid medium have been used for biological and mechanical sensing and also to investigate materials and mechanical properties. An analytical approach has been developed in this paper to accurately predict toroidal vibrations of an elastic nanosphere in water–glycerol mixture. The Maxwell and Kelvin–Voigt models are used to describe the viscoelasticity of this fluid. The influence of key parameters such as glycerol mass fraction, sphere radius, and angular mode number are studied. We demonstrate that the sphere radius plays a significant role on the quality factor. Results also highlight three behavior zones: viscous fluid, transition, and elastic solid. In addition, these investigations can serve as benchmark solution in design of liquid sensors.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.79
Mots clés : Viscoelastic liquid, Elastic sphere, Toroidal vibration, Analytical approach, Maxwell model, Kelvin–Voigt model

Jean Yves Le Pommellec 1 ; Adil El Baroudi 1

1 Arts et Metiers Institute of Technology, Angers, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2021__349_1_179_0,
     author = {Jean Yves Le Pommellec and Adil El Baroudi},
     title = {Correlation between the toroidal modes of an elastic sphere and the viscosity of liquids},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {179--188},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {349},
     number = {1},
     year = {2021},
     doi = {10.5802/crmeca.79},
     language = {en},
}
TY  - JOUR
AU  - Jean Yves Le Pommellec
AU  - Adil El Baroudi
TI  - Correlation between the toroidal modes of an elastic sphere and the viscosity of liquids
JO  - Comptes Rendus. Mécanique
PY  - 2021
SP  - 179
EP  - 188
VL  - 349
IS  - 1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.79
LA  - en
ID  - CRMECA_2021__349_1_179_0
ER  - 
%0 Journal Article
%A Jean Yves Le Pommellec
%A Adil El Baroudi
%T Correlation between the toroidal modes of an elastic sphere and the viscosity of liquids
%J Comptes Rendus. Mécanique
%D 2021
%P 179-188
%V 349
%N 1
%I Académie des sciences, Paris
%R 10.5802/crmeca.79
%G en
%F CRMECA_2021__349_1_179_0
Jean Yves Le Pommellec; Adil El Baroudi. Correlation between the toroidal modes of an elastic sphere and the viscosity of liquids. Comptes Rendus. Mécanique, Volume 349 (2021) no. 1, pp. 179-188. doi : 10.5802/crmeca.79. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.79/

[1] S. S. Verbridge; L. M. Bellan; J. M. Parpia; H. G. Craighead Optically driven resonance of nanoscale flexural oscillators in liquid, Nano Lett., Volume 6 (2006), pp. 2109-2114 | DOI

[2] H. Portales; N. Goubet; L. Saviot; S. Adichtchev; D. B. Murray; A. Mermet; E. Duval; M. P. Pileni Probing atomic ordering and multiple twinning in metal nanocrystals through their vibrations, Proc. Natl Acad. Sci. USA, Volume 105 (2008), pp. 14784-14789 | DOI

[3] K. Jensen; K. Kim; A. Zettl An atomic-resolution nanomechanical mass sensor, Nat. Nanotechnol., Volume 3 (2008), pp. 533-537 | DOI

[4] J. L. Arlett; E. B. Myers; M. L. Roukes Comparative advantages of mechanical biosensors, Nat. Nanotechnol., Volume 6 (2011), pp. 203-215 | DOI

[5] P. V. Ruijgrok; P. Zijlstra; A. L. Tchebotareva; M. Orrit Damping of acoustic vibrations of single gold nanoparticles optically trapped in water, Nano Lett., Volume 12 (2012), pp. 1063-1069 | DOI

[6] D. Chakraborty; E. V. Leeuwen; M. Pelton; J. E. Sader Vibration of nanoparticles in viscous fluids, J. Phys. Chem., Volume 117 (2013), pp. 8536-8544

[7] M. Babincova; P. Sourivong; P. Babinec Resonant absorption of ultrasound energy as a method of HIV destruction, Med. Hypotheses, Volume 55 (2000), pp. 450-451 | DOI

[8] L. H. Ford Estimate of the vibrational frequencies of spherical virus particles, Phys. Rev. E, Volume 67 (2003), 051924

[9] L. Saviot; D. B. Murray; A. Mermet; E. Duval Comment on estimate of the vibrational frequencies of spherical virus particles, Phys. Rev. E, Volume 69 (2004), 023901 | DOI

[10] M. Talati; P. K. Jha Acoustic phonon quantization and low-frequency raman spectra of spherical viruses, Phys. Rev. E, Volume 73 (2006), 011901

[11] S. Sirotkin; A. Mermet; M. Bergoin; V. Ward; J. L. Van Etten Viruses as nanoparticles: Structure versus collective dynamics, Phys. Rev. E, Volume 90 (2014), 022718

[12] G. V. Hartland Coherent excitation of vibrational modes in metallic nanoparticles, Annu. Rev. Phys. Chem., Volume 57 (2006), pp. 403-430 | DOI

[13] M. Fujii; T. Nagareda; S. Hayashi; S. Hayashi; K Yamamoto Low-frequency raman scattering from small silver particles embedded in SiO 2 thin films, Phys. Rev. B, Volume 44 (1991), pp. 6243-6248 | DOI

[14] H. Lamb On the vibrations of an elastic sphere, Proc. London Math. Soc., Volume 13 (1882), pp. 189-212 | MR | Zbl

[15] V. Galstyan; O. S. Pak; H. A. Stone A note on the breathing mode of an elastic sphere in Newtonian and complex fluids, Phys. Fluids, Volume 27 (2015), 032001 | DOI

[16] D. Chakraborty; E. Sader Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales, Phys. Fluids, Volume 27 (2015), 052002 | DOI | Zbl

[17] X. Yang; A. El Baroudi; J. Y. Le Pommellec Analytical approach for predicting vibration characteristics of an embedded elastic sphere in complex fluid, Arch. Appl. Mech., Volume 90 (2020), pp. 1399-1414 | DOI

[18] A. El Baroudi A note on the spheroidal modes vibration of an elastic sphere in linear viscoelastic fluid, Phys. Lett. A, Volume 384 (2020), 126556 | DOI | MR | Zbl

[19] W. Abassi; A. El Baroudi; F. Razafimahery Torsional vibrations of fluid-filled multilayered transversely isotropic finite circular cylinder, Int. J. Appl. Mech., Volume 8 (2016), 1650032 | DOI

[20] I. Mnassri; A. El Baroudi Vibrational frequency analysis of finite elastic tube filled with compressible viscous fluid, Acta Mech. Solida Sin., Volume 30 (2017), pp. 435-444 | DOI

[21] J. Y. Le Pommellec; A. El Baroudi A novel generalized dispersion equation to design circumferential wave fluid sensors, SN Appl. Sci., Volume 1 (2019), 788

[22] D. D. Joseph Fluid Dynamics of Viscoelastic Liquids, Springer, New York, 1990 | Zbl

[23] P. M. Morse; H. Feshbach Methods of Theoretical Physics Part II, McGraw-Hill, New York, 1946

[24] M. Pelton; D. Chakraborty; E. Malachosky; P. Guyot-Sionnest; J. E. Sader Viscoelastic flows in simple liquids generated by vibrating nanostructures, Phys. Rev. Lett., Volume 111 (2013), 244502 | DOI

[25] T. A. Major; A. Crut; B. Gao; S. S. Lo; N. D. Fatti; F. Vallee; G. V. Hartland Damping of the acoustic vibrations of a suspended gold nanowire in air and water environments, Phys. Chem. Chem. Phys., Volume 15 (2013), pp. 4169-4176 | DOI

[26] L. Saviot; D. B. Murray; A. Mermet; E. Duval Damping by bulk and shear viscosity of confined acoustic phonons for nanostructures in aqueous solution, J. Phys. Chem. B, Volume 111 (2007), pp. 7457-7461 | DOI

Cité par Sources :

Commentaires - Politique