Comptes Rendus
Articles spontanés
A Soft Landing Approach for the Centrifugal Microgel Synthesis Process
Comptes Rendus. Mécanique, Volume 351 (2023), pp. 83-102.

Centrifugal microencapsulation has been shown to be a promising encapsulation technique, satisfying at the same time many requirements needed for biomedical applications (monodispersity, controlled size, spherical shape, sterile production environment) and allowing a high capsules production rate, using only conventional lab material. Another important advantage of this technology is the ability to process highly viscous biopolymer solutions. The usage of such solutions is desirable in multiple biomedical applications, because they yield capsules with improved mechanical properties (stiffness and yield strength) and with optimised porosity, which increases the immunoprotection in the case of biomaterial encapsulation applied to cell therapy and enhances a prolonged dissolution behaviour in the case of drug delivery applications. However, previous studies have shown that spherical capsules cannot be obtained using highly viscous solutions, and a capsule tail is always present when such solutions are used. This represents a significant limitation of this technology, since capsule shape regularity is an important requirement for various biomedical applications (e.g. cell therapy implants, drug delivery). In this article we propose and validate experimentally an adaptation of the centrifugal microencapsulation, based on the concept of “soft landing” [1]. This technique allows the production of ellipsoidal and spherical capsules using very viscous (typically up to several tens of Pa.s) biopolymer solutions.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.154
Mots-clés : Alginate microcapsules, Centrifugal microfluidics, Microencapsulation, Shape optimisation, High viscosity

Matei Badalan 1, 2 ; Lucie Adisson 1 ; Arthur Boldron 1 ; Jean-Luc Achard 1, 2 ; Giovanni Ghigliotti 2 ; Guillaume Balarac 2 ; Frédéric Bottausci 1

1 Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and biology division, Microfluidic Systems and Bioengineering Lab, 38000 Grenoble, France
2 Univ. Grenoble Alpes, CNRS, Grenoble INP, LEGI, 38000 Grenoble, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2023__351_G1_83_0,
     author = {Matei Badalan and Lucie Adisson and Arthur Boldron and Jean-Luc Achard and Giovanni Ghigliotti and Guillaume Balarac and Fr\'ed\'eric Bottausci},
     title = {A {Soft} {Landing} {Approach} for the {Centrifugal} {Microgel} {Synthesis} {Process}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {83--102},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     year = {2023},
     doi = {10.5802/crmeca.154},
     language = {en},
}
TY  - JOUR
AU  - Matei Badalan
AU  - Lucie Adisson
AU  - Arthur Boldron
AU  - Jean-Luc Achard
AU  - Giovanni Ghigliotti
AU  - Guillaume Balarac
AU  - Frédéric Bottausci
TI  - A Soft Landing Approach for the Centrifugal Microgel Synthesis Process
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 83
EP  - 102
VL  - 351
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.154
LA  - en
ID  - CRMECA_2023__351_G1_83_0
ER  - 
%0 Journal Article
%A Matei Badalan
%A Lucie Adisson
%A Arthur Boldron
%A Jean-Luc Achard
%A Giovanni Ghigliotti
%A Guillaume Balarac
%A Frédéric Bottausci
%T A Soft Landing Approach for the Centrifugal Microgel Synthesis Process
%J Comptes Rendus. Mécanique
%D 2023
%P 83-102
%V 351
%I Académie des sciences, Paris
%R 10.5802/crmeca.154
%G en
%F CRMECA_2023__351_G1_83_0
Matei Badalan; Lucie Adisson; Arthur Boldron; Jean-Luc Achard; Giovanni Ghigliotti; Guillaume Balarac; Frédéric Bottausci. A Soft Landing Approach for the Centrifugal Microgel Synthesis Process. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 83-102. doi : 10.5802/crmeca.154. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.154/

[1] A. Buthe; W. Hartmeier; M. B. Ansorge-Schumacher Novel solvent-based method for preparation of alginate beads with improved roundness and predictable size, J. Microencapsul., Volume 21 (2004) no. 8, pp. 865-876 | DOI

[2] Stefan Haeberle; Lars Naegele; Robert Burger; Felix Von Stetten; Roland Zengerle; Jens Ducree Alginate bead fabrication and encapsulation of living cells under centrifugally induced artificial gravity conditions, J. Microencapsul., Volume 25 (2008) no. 4, pp. 267-274 | DOI

[3] Matei Badalan; Frédéric Bottausci; Giovanni Ghigliotti; Jean-Luc Achard; Guillaume Balarac Three-dimensional phase diagram for the centrifugal calcium-alginate microcapsules production technology, Colloids Surf. A Physicochem. Eng. Asp., Volume 635 (2022), 127907 | DOI

[4] Kazuki Maeda; Masahiro Takinoue; Hiroaki Onoe; Shoji Takeuchi A centrifuge-based droplet shooting device for the synthesis of multi-compartmental microspheres under ultra-high gravity, 15 th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2011, MicroTAS 2011, Volume 1 (2011), pp. 12-14

[5] Kazuki Maeda; Hiroaki Onoe; Masahiro Takinoue; Shoji Takeuchi Controlled synthesis of 3D multi-compartmental particles with centrifuge-based microdroplet formation from a multi-barrelled capillary, Advanced Materials, Volume 24 (2012) no. 10, pp. 1340-1346 | DOI

[6] Kiichi Inamori; Hiroaki Onoe; Masahiro Takinoue; Shoji Takeuchi Centrifuge-based single cell encapsulation in hydrogel microbeads from ultra low volume of samples, 17 th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013, Volume 1, Chemical and Biological Microsystems Society (2013), pp. 314-316

[7] Masayuki Hayakawa; Hiroaki Onoe; Ken H. Nagai; Masahiro Takinoue Rapid formation of anisotropic non-spherical hydrogel microparticles with complex structures using a tabletop centrifuge-based microfluidic device, 17 th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013, Volume 1, Chemical and Biological Microsystems Society (2013), pp. 630-632

[8] Hiroaki Onoe; Kiichi Inamori; Masahiro Takinoue; Shoji Takeuchi Centrifuge-based cell encapsulation in hydrogel microbeads using sub-microliter sample solution, RSC Adv., Volume 4 (2014) no. 58, pp. 30480-30484 | DOI

[9] Hitoyoshi Yamashita; Masamune Morita; Haruka Sugiura; Kei Fujiwara; Hiroaki Onoe; Masahiro Takinoue Generation of monodisperse cell-sized microdroplets using a centrifuge-based axisymmetric co-flowing microfluidic device, J. Biosci. Bioeng., Volume 119 (2015) no. 4, pp. 492-495 | DOI

[10] Masamune Morita; Hiroaki Onoe; Miho Yanagisawa; Hiroaki Ito; Masatoshi Ichikawa; Kei Fujiwara; Hirohide Saito; Masahiro Takinoue Droplet-Shooting and Size-Filtration (DSSF) Method for Synthesis of Cell-Sized Liposomes with Controlled Lipid Compositions, ChemBioChem, Volume 16 (2015) no. 14, pp. 2029-2035 | DOI

[11] Shoya Yasuda; Masayuki Hayakawa; Hiroaki Onoe; Masahiro Takinoue Generation of multi-helical microfibers and marble microbeads using orbital-rotation and axial-spin centrifuge, MicroTAS 2015 - 19 th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Chemical and Biological Microsystems Society (2015), pp. 1163-1165

[12] Masamune Morita; Hitoyoshi Yamashita; Masayuki Hayakawa; Hiroaki Onoe; Masahiro Takinoue Capillary-based centrifugal microfluidic device for size-controllable formation of monodisperse microdroplets, J. Vis. Exp., Volume 2016 (2016) no. 108, e53860 | DOI

[13] Jun Sawayama; Shoji Takeuchi CORE-shell microparticles formation with centrifugal coaxial microfluidic device, 2016 IEEE 29 th International Conference on Micro Electro Mechanical Systems (MEMS) (Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)), Volume 2016-Febru, IEEE (2016) no. January, pp. 708-709 | DOI

[14] Shoya Yasuda; Masayuki Hayakawa; Hiroaki Onoe; Masahiro Takinoue Twisting microfluidics in a planetary centrifuge, Soft Matter, Volume 13 (2017) no. 11, pp. 2141-2147 | DOI

[15] Yuya Morimoto; Maiko Onuki; Shoji Takeuchi Mass Production of Cell-Laden Calcium Alginate Particles with Centrifugal Force, Advanced Healthcare Materials, Volume 6 (2017) no. 13, 1601375 | DOI

[16] Jacqueline A. De Lora; Jason L. Velasquez; Nick J. Carroll; James P. Freyer; Andrew P. Shreve Centrifugal Generation of Droplet-Based 3D Cell Cultures, SLAS Technol., Volume 25 (2020) no. 5, pp. 436-445 | DOI

[17] Yue Cheng; Xiaozhang Zhang; Yuan Cao; Conghui Tian; Yufang Li; Meng Wang; Yuanjin Zhao; Gang Zhao Centrifugal microfluidics for ultra-rapid fabrication of versatile hydrogel microcarriers, Applied Materials Today, Volume 13 (2018), pp. 116-125 | DOI

[18] Jinbo Li; Yuetong Wang; Lijun Cai; Luoran Shang; Yuanjin Zhao High-throughput generation of microgels in centrifugal multi-channel rotating system, Chemical Engineering Journal, Volume 427 (2022), 130750 | DOI

[19] David K. Boadi; Abraham Marmur Drop formation and detachment from rotating capillaries, J. Colloid Interface Sci., Volume 140 (1990) no. 2, pp. 507-524 | DOI

[20] Kazuki Maeda; Hiroaki Onoe; Masahiro Takinoue; Shoji Takeuchi Instantaneous solidification of a centrifuge-driven capillary jet with controlled hydrodynamic instability in a centrifuge-based droplet shooting device through observational analysis, Proceedings of the 16 th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2012, Chemical and Biological Microsystems Society (2012), pp. 878-880

[21] Kazuki Maeda; Hiroaki Onoe; Masahiro Takinoue; Shoji Takeuchi Observation and manipulation of a capillary jet in a centrifuge-based droplet shooting device, Micromachines, Volume 6 (2015) no. 10, pp. 1526-1533 | DOI

[22] Huseyin Burak Eral; Eric R. Safai; Bavand Keshavarz; Jae Jung Kim; Jiseok Lee; P. S. Doyle Governing Principles of Alginate Microparticle Synthesis with Centrifugal Forces, Langmuir, Volume 32 (2016) no. 28, pp. 7198-7209 | DOI

[23] Matei Badalan; Giovanni Ghigliotti; Jean-Luc Achard; Frédéric Bottausci; Guillaume Balarac Physical Analysis of the Centrifugal Microencapsulation Process, Ind. Eng. Chem. Res., Volume 61 (2022) no. 30, pp. 10891-10914 | DOI

[24] Wan-Ping Voo; Boon-Beng Lee; Ani Idris; Aminul Islam; Beng-Ti Tey; Eng-Seng Chan Production of ultra-high concentration calcium alginate beads with prolonged dissolution profile, RSC Adv., Volume 5 (2015) no. 46, pp. 36687-36695 | DOI

[25] Swapnil V. Bhujbal; Genaro A. Paredes-Juarez; Simone P. Niclou; Paul de Vos Factors influencing the mechanical stability of alginate beads applicable for immunoisolation of mammalian cells, J. Mech. Behav. Biomed. Mater., Volume 37 (2014), pp. 196-208 | DOI

[26] Eng-Seng Chan; Tek-Kaun Lim; Wan-Ping Voo; Ravindra Pogaku; Beng Ti Tey; Zhibing Zhang Effect of formulation of alginate beads on their mechanical behavior and stiffness, Particuology, Volume 9 (2011), pp. 228-234 | DOI

[27] A. Martinsen; G. Skjåk-Bræk; O. Smidsrød Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads, Biotechnol. Bioeng., Volume 33 (1989) no. 1, pp. 79-89 | DOI

[28] Michael Peirone; Colin J. D. Ross; Gonzalo Hortelano; John L. Brash; Patricia L. Chang Encapsulation of various recombinant mammalian cell types in different alginate microcapsules, J. Biomed. Mater. Res., Volume 42 (1998) no. 4, pp. 587-596 | DOI

[29] Artur Bartkowiak; David Hunkeler Alginate-oligochitosan microcapsules: A mechanistic study relating membrane and capsule properties to reaction conditions, Chem. Mater., Volume 11 (1999) no. 9, pp. 2486-2492 | DOI

[30] V. Pillay; C. M. Dangor; T. Govender; K. R. Moopanar; N. Hurbans Drug release modulation from cross-linked calcium alginate microdiscs, 1: Evaluation of the concentration dependency of sodium alginate on drug entrapment capacity, morphology, and dissolution rate, Drug Deliv., Volume 5 (1998) no. 1, pp. 25-34 | DOI

[31] Nicholas A. Hadjiev; Brian G. Amsden An assessment of the ability of the obstruction-scaling model to estimate solute diffusion coefficients in hydrogels, J. Control. Release, Volume 199 (2015), pp. 10-16 | DOI

[32] Paul de Vos; A. Andersson; S. K. Tam; M. M. Faas; J. P. Hallé Advances and Barriers in Mammalian Cell Encapsulation for Treatment of Diabetes, Immun., Endoc. & Metab. Agents in Med. Chem., Volume 6 (2006), pp. 139-153 | DOI

[33] J. A. M. Steele; J. P. Hallé; Denis Poncelet; R. J. Neufeld Therapeutic cell encapsulation techniques and applications in diabetes, Advanced Drug Delivery Reviews, Volume 67-68 (2014), pp. 74-83 | DOI

[34] Veronica Iacovacci; Leonardo Ricotti; Arianna Menciassi; Paolo Dario The bioartificial pancreas (BAP): Biological, chemical and engineering challenges, Biochemical Pharmacology, Volume 100, 2016, pp. 12-27 | DOI

[35] W. F. Kendall; M. D. Darrabie; H. M. El-Shewy; E. C. Opara Effect of alginate composition and purity on alginate microspheres, J. Microencapsul., Volume 21 (2004) no. 8, pp. 821-828 | DOI

[36] Paul De Vos; A. F. Hamel; K. Tatarkiewicz Considerations for successful transplantation of encapsulated pancreatic islets, Diabetologia, Volume 45 (2002) no. 2, pp. 159-173 | DOI

[37] Qian Deng Fluid dynamics study of bubble entrapment during encapsulation, Ph. D. Thesis, Vanderbilt University, Nashville, USA (2007), 159 pages (https://ir.vanderbilt.edu/handle/1803/10587)

[38] Qin Wang; Shanshan Liu; Hong Wang; Jintao Zhu; Yajiang Yang Alginate droplets pre-crosslinked in microchannels to prepare monodispersed spherical microgels, Colloids Surf. A Physicochem. Eng. Asp., Volume 482 (2015), pp. 371-377 | DOI

[39] Barbara F. Matlaga; Lewis P. Yasenchak; Thomas N. Salthouse Tissue response to implanted polymers: The significance of sample shape, J. Biomed. Mater. Res., Volume 10 (1976) no. 3, pp. 391-397 | DOI

[40] Thomas N. Salthouse Some aspects of macrophage behavior at the implant interface, J. Biomed. Mater. Res., Volume 18 (1984) no. 4, pp. 395-401 | DOI

[41] Myron Spector; Cynthia Cease; Tong-Li Xia The local tissue response to biomaterials, Critical Reviews in Biocompatibility, Volume 5 (1989) no. 3, pp. 269-295

[42] Eng-Seng Chan; Boon-Beng Lee; Pogaku Ravindra; Denis Poncelet Prediction models for shape and size of ca-alginate macrobeads produced through extrusion-dripping method, J. Colloid Interface Sci., Volume 338 (2009) no. 1, pp. 63-72 | DOI

[43] Matei Badalan; Frédéric Bottausci; Giovanni Ghigliotti; Jean-Luc Achard; Guillaume Balarac Effects of process parameters on capsule size and shape in the centrifugal encapsulation technology: Parametric study dataset, Data in Brief, Volume 41 (2022), 107851 | DOI

[44] Geoffrey I. Taylor The formation of emulsions in definable fields of flow, Proc. R. Soc. Lond., Ser. A, Volume 146 (1934) no. 858, pp. 501-523 | DOI

[45] A. Luciani; M. F. Champagne; L. A. Utracki Interfacial tension coefficient from the retraction of ellipsoidal drops, J. Polym. Sci. B Polym. Phys., Volume 35 (1997) no. 9, pp. 1393-1403 | DOI

[46] Josef Juza Surface Tension Measurements of Viscous Materials by Pendant Drop Method: Time Needed to Establish Equilibrium Shape, Macromol. Symp., Volume 384 (2019) no. 1, 1800150 | DOI

[47] Boon-Beng Lee; Pogaku Ravindra; Eng-Seng Chan Size and shape of calcium alginate beads produced by extrusion dripping, Chemical Engineering and Technology, Volume 36 (2013) no. 10, pp. 1627-1642 | DOI

[48] V Ya. Rivkind; G. M. Ryskin Flow structure in motion of a spherical drop in a fluid medium at intermediate Reynolds numbers, Fluid Dynamics, Volume 11 (1976) no. 1, pp. 5-12 | DOI

[49] Rui Yang; Qiao-Cong Lao; Hang-Ping Yu; Yong Zhang; Hong-Cui Liu; Lin Luan; Hui-Min Sun; Chun-Qi Li Tween-80 and impurity induce anaphylactoid reaction in zebrafish, J. Appl. Toxicol., Volume 35 (2015) no. 3, pp. 295-301 | DOI

[50] Jean-François Guthmann; Alain Karleskind; Jean-Pierre Wolff Manuel des corps gras, Technique et documentation Lavoisier, 1992, 1500 pages

[51] Fereidoon Shahidi Bailey’s Industrial Oil and Fat Products, Industrial and Nonedible Products from Oils and Fats, Bailey’s Industrial Oil and Fat Products, 6, John Wiley & Sons, 2005, pp. 303-332

[52] Bernardo D Ribeiro; Catarina Florindo; Lucas C Iff; Maria A. Z. Coelho; Isabel M Marrucho Menthol-based eutectic mixtures: Hydrophobic low viscosity solvents, ACS Sustainable Chem. Eng., Volume 3 (2015) no. 10, pp. 2469-2477 | DOI

[53] Ediguer E. Franco; Julio C. Adamowski; Ricardo T. Higuti; Flávio Buiochi Viscosity measurement of newtonian liquids using the complex reflection coefficient, IEEE Trans. Ultrason. Ferroelectr. Freq. Control., Volume 55 (2008) no. 10, pp. 2247-2253 | DOI

[54] Hassan Nezammahalleh; Mohsen Nosrati; Faezeh Ghanati; Seyed Abbas Shojaosadati Exergy-based screening of biocompatible solvents for in situ lipid extraction from Chlorella vulgaris, J. Appl. Phycol., Volume 29 (2017) no. 1, pp. 89-103 | DOI

[55] Krishnayan Haldar; Sudipto Chakraborty Effect of liquid pool concentration on chemically reactive drop impact gelation process, J. Colloid Interface Sci., Volume 528 (2018), pp. 156-165 | DOI

[56] Lorenzo Capretto; Stefania Mazzitelli; Cosimo Balestra; Azzura Tosi; Claudio Nastruzzi Effect of the gelation process on the production of alginate microbeads by microfluidic chip technology, Lab Chip, Volume 8 (2008) no. 4, pp. 617-621 | DOI

[57] T. D. Dang; S. W. Joo Preparation of tadpole-shaped calcium alginate microparticles with sphericity control, Colloids and Surfaces B: Biointerfaces, Volume 102 (2013), pp. 766-771 | DOI

[58] Yung Sheng Lin; Chih Hui Yang; Yi Yao Hsu; Chen Ling Hsieh Microfluidic synthesis of tail-shaped alginate microparticles using slow sedimentation, Electrophoresis, Volume 34 (2013) no. 3, pp. 425-431 | DOI

[59] Yuandu Hu; Qin Wang; Jianying Wang; Jintao Zhu; Hong Wang; Yajiang Yang Shape controllable microgel particles prepared by microfluidic combining external ionic crosslinking, Biomicrofluidics, Volume 6 (2012) no. 2, 026502 | DOI

[60] Michael Cohen; Larry Edmund J. Gladney; Louise W. Kahn Classical Mechanics: a Critical Introduction, Hindawi Publishing Corporation, 2011

Cité par Sources :

Commentaires - Politique