Comptes Rendus
Article de recherche
An incremental variational method to the coupling between gradient damage, thermoelasticity and heat conduction
[Une méthode variationnelle incrémentale pour le couplage entre gradient d’endommagement, thermoélasticité et conduction thermique]
Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1063-1084

In this work, we propose an incremental variational approach to study the coupling between gradient damage, thermoelasticity and heat conduction phenomena. To this end, we first extend the thermodynamics of linear thermoelasticity to incorporate gradient damage phenomena. After carefully introducing the concept of kinetic entropy to describe the interaction between thermoelasticity and heat conduction, this extension is implemented to establish a four-field incremental energy minimization procedure. By considering a suitable kinetic entropy approximation, the latter is then consistently reduced to a three-field (displacement, damage, and absolute temperature) dependency, numerically implemented by means of a staggered optimization algorithm. Applications consisting in a study of the cracking of a plate under thermal shocks are considered. The approach is shown to deliver reliable predictions, based on comparison to available experimental observations which is also provided.

Dans ce travail, nous proposons une approche variationnelle incrémentale pour étudier le couplage entre les phénomènes d’endommagement non local, thermoélasticité et conduction thermique. À cette fin, nous étendons d’abord le cadre thermodynamique de la thermoélasticité linéaire afin d’y intégrer les phénomènes d’endommagement non local. Après avoir soigneusement introduit le concept d’entropie cinétique pour décrire l’interaction entre thermoélasticité et conduction thermique, cette extension est mise en œuvre pour établir une procédure de minimisation de l’énergie incrémentale à quatre champs. En considérant une approximation adaptée de l’entropie cinétique, cette procédure est ensuite réduite de manière cohérente à une dépendance en trois champs (déplacement, endommagement et température absolue), mise en œuvre numériquement au moyen d’un algorithme d’optimisation alternée. Des applications sont proposées, consistant en l’étude de la fissuration d’une plaque soumise à des chocs thermiques. L’approche montre sa capacité à fournir des prédictions fiables, une comparaison avec les observations expérimentales disponibles étant également présentée.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.325
Keywords: Gradient damage model, thermoelasticity, heat conduction, thermodynamics-based formulation, incremental variational approach
Mots-clés : Modèle à gradient d’endommagement, thermoélasticité, conduction thermique, formulation fondée sur la thermodynamique, approche variationnelle incrémentale

Banouho Kamagaté  1 , 2   ; Long Cheng  3   ; Radhi Abdelmoula  4   ; Emile Danho  2   ; Djimédo Kondo  1

1 Institut Jean Le Rond d’Alembert, CNRS UMR7190, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
2 Laboratoire de Mécanique et Informatique, UFR Mathématique et Informatique, Université Félix Houphouët-Boigny, rue des écoles, Abidjan, Côte d’Ivoire
3 GeoRessources Laboratory, Université de Lorraine (ENSG), CNRS UMR7359, 54518 Vandoeuvre-lès-Nancy, France
4 Laboratoire des Sciences des Procédés et des Matériaux, Institut Galilée, Université Sorbonne Paris Nord, CNRS UPR3407, 93430 Villetaneuse, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2025__353_G1_1063_0,
     author = {Banouho Kamagat\'e and Long Cheng and Radhi Abdelmoula and Emile Danho and Djim\'edo Kondo},
     title = {An incremental variational method to the coupling between gradient damage, thermoelasticity and heat conduction},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {1063--1084},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {353},
     doi = {10.5802/crmeca.325},
     language = {en},
}
TY  - JOUR
AU  - Banouho Kamagaté
AU  - Long Cheng
AU  - Radhi Abdelmoula
AU  - Emile Danho
AU  - Djimédo Kondo
TI  - An incremental variational method to the coupling between gradient damage, thermoelasticity and heat conduction
JO  - Comptes Rendus. Mécanique
PY  - 2025
SP  - 1063
EP  - 1084
VL  - 353
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.325
LA  - en
ID  - CRMECA_2025__353_G1_1063_0
ER  - 
%0 Journal Article
%A Banouho Kamagaté
%A Long Cheng
%A Radhi Abdelmoula
%A Emile Danho
%A Djimédo Kondo
%T An incremental variational method to the coupling between gradient damage, thermoelasticity and heat conduction
%J Comptes Rendus. Mécanique
%D 2025
%P 1063-1084
%V 353
%I Académie des sciences, Paris
%R 10.5802/crmeca.325
%G en
%F CRMECA_2025__353_G1_1063_0
Banouho Kamagaté; Long Cheng; Radhi Abdelmoula; Emile Danho; Djimédo Kondo. An incremental variational method to the coupling between gradient damage, thermoelasticity and heat conduction. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1063-1084. doi: 10.5802/crmeca.325

[1] M. A. Biot Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., Volume 27 (1956) no. 3, pp. 240-253 | DOI

[2] M. A. Biot New methods in heat flow analysis with application to flight structures, J. Aeronaut. Sci., Volume 24 (1957) no. 12, pp. 857-873 | DOI

[3] Bruno A. Boley; Jerome H. Weiner Theory of thermal stresses, John Wiley & Sons, 1962 | MR

[4] M. Ben-Amoz On a variational theorem in coupled thermoelasticity, J. Appl. Mech., Volume 32 (1965), pp. 943-945 | DOI

[5] George Herrmann On variational principles in thermoelasticity and heat conduction, Q. Appl. Math., Volume 21 (1963) no. 2, pp. 151-155 | DOI

[6] W. Nowacki Thermal stresses in anisotropic bodies, Thermomechanics in solids. A symposium held at CISM, Udine, July 1974 (W. Nowacki; I. N. Sneddon, eds.) (CISM International Centre for Mechanical Sciences), Springer, 1977 no. 223, pp. 25-54

[7] W. Nowacki Thermoelasticity, Elsevier, 1986 | DOI | MR

[8] Gautam Batra On a principle of virtual work for thermo-elastic bodies, J. Elasticity, Volume 21 (1989) no. 2, pp. 131-146 | DOI

[9] B. A. Finlayson; L. E. Scriven On the search for variational principles, Int. J. Heat Mass Transfer, Volume 10 (1967) no. 6, pp. 799-821 | DOI

[10] Georgy Lebon; Piotr Perzyna Variational principles in thermomechanics, Recent developments in thermomechanics of solids (CISM International Centre for Mechanical Sciences), Springer, 1980 no. 262, pp. 221-396

[11] A. E. Green; P. M. Naghdi Thermoelasticity without energy dissipation, J. Elasticity, Volume 31 (1993) no. 3, pp. 189-208 | DOI

[12] S Bargmann; Paul Steinmann Theoretical and computational aspects of non-classical thermoelasticity, Comput. Methods Appl. Mech. Eng., Volume 196 (2006) no. 1-3, pp. 516-527 | DOI

[13] Q. Yang; L. Stainier; M. Ortiz A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids, J. Mech. Phys. Solids, Volume 54 (2006), pp. 401-424 | DOI

[14] L. Stainier Chapter Two — A variational approach to modeling coupled thermo-mechanical nonlinear dissipative behaviors, Adv. Appl. Mech., Volume 46 (2013), pp. 69-126 | DOI

[15] Michaël Peigney A time-integration scheme for thermomechanical evolutions of shape-memory alloys, C. R. Méc., Volume 334 (2006) no. 4, pp. 266-271 | DOI

[16] Michaël Peigney; Jean-Philippe Seguin An incremental variational approach to coupled thermo-mechanical problems in anelastic solids. Application to shape-memory alloys, Int. J. Solids Struct., Volume 50 (2013) no. 24, pp. 4043-4054 | DOI

[17] Laurent Stainier; Michael Ortiz Study and validation of a variational theory of thermo-mechanical coupling in finite visco-plasticity, Int. J. Solids Struct., Volume 47 (2010) no. 5, pp. 705-715 | DOI

[18] A. Bartels; T. Bartel; M. Canadija; J. Mosler On the thermomechanical coupling in dissipative materials: a variational approach for generalized standard materials, J. Mech. Phys. Solids, Volume 82 (2015), pp. 218-234 | DOI

[19] Ignacio Romero; Eva M. Andrés; Ángel Ortiz-Toranzo Variational updates for general thermo-chemo-mechanical processes of inelastic solids, Comput. Methods Appl. Mech. Eng., Volume 385 (2021), 114013, 23 pages | Zbl

[20] Stephan Teichtmeister; M.-A. Keip A variational framework for the thermomechanics of gradient-extended dissipative solids—with applications to diffusion, damage and plasticity, J. Elasticity, Volume 148 (2022) no. 1, pp. 81-126 | DOI

[21] Blaise Bourdin; Jean-Jacques Marigo; Corrado Maurini; Paul Sicsic Morphogenesis and propagation of complex cracks induced by thermal shocks, Phys. Rev. Lett., Volume 112 (2014) no. 1, 014301, 5 pages

[22] Paul Sicsic; Jean-Jacques Marigo; Corrado Maurini Initiation of a periodic array of cracks in the thermal shock problem: a gradient damage modeling, J. Mech. Phys. Solids, Volume 63 (2014), pp. 256-284 | DOI

[23] Tushar Kanti Mandal; Vinh Phu Nguyen; Jian-Ying Wu; Chi Nguyen-Thanh; Alban de Vaucorbeild Fracture of thermo-elastic solids: phase-field modeling and new results with an efficient monolithic solver, Comput. Methods Appl. Mech. Eng., Volume 376 (2021), 113648 | Zbl

[24] Marwa Dhahri; Radhi Abdelmoula; Jia Li; Yamen Maalej Thermal shock cracking in thin plate specimens using a gradient damage model, J. Mech. Mater. Struct., Volume 18 (2023) no. 1, pp. 19-38 | DOI

[25] Dongyang Chu; Xiang Li; Zhanli Liu Study the dynamic crack path in brittle material under thermal shock loading by phase field modeling, Int. J. Fract., Volume 208 (2017) no. 1, pp. 115-130

[26] Jia-Hong Zheng; Zheng Zhong; Cong-Ying Jiang Coupled thermoelastic theory and associated variational principles based on decomposition of internal energy, Acta Mech. Sin., Volume 36 (2020) no. 1, pp. 107-115 | DOI

[27] Tiancheng Zhang; Tinh Quoc Bui; Tiantang Yu; Yicong Li; Sundararajan Natarajan Quasi-static thermoelastic fracture: Adaptive phase-field modeling with variable-node elements, Theor. Appl. Fract. Mech., Volume 124 (2023), 103811

[28] Yicong Li; Tiantang Yu; Chen Xing; Sundararajan Natarajan Modeling quasi-static and dynamic thermo-elastic coupled brittle fracture using an adaptive isogeometric hybrid phase-field method, Finite Elem. Anal. Des., Volume 224 (2023), 103993

[29] A. Chrysochoos; C. Licht; R. Peyroux A one-dimensional thermomechanical modeling of phase change front propagation in a SMA polycrystal, C. R. Méc., Volume 331 (2003), pp. 25-32 | Zbl

[30] Yingfeng Shao; Yue Zhang; Xianghong Xu; Zhiliang Zhou; Wei Li; Boyang Liu Effect of crack pattern on the residual strength of ceramics after quenching, J. Am. Ceram. Soc., Volume 94 (2011) no. 9, pp. 2804-2807 | DOI

[31] Michel Frémond; Boumediene Nedjar Damage, gradient of damage and principle of virtual power, Int. J. Solids Struct., Volume 33 (1996) no. 8, pp. 1083-1103 | DOI

[32] B. Halphen; Q.-C. Nguyen Sur les matériaux standards généralisés, J. Méc., Paris, Volume 14 (1975) no. 1, pp. 39-63 | Zbl

[33] X.-D. Zhang; L. Cheng; D. Kondo; A. Giraud Incremental variational approach to gradient damage coupled with poroelasticity of saturated media, J. Mech. Phys. Solids, Volume 187 (2024), 105614

[34] Michael Ortiz; Laurent Stainier The variational formulation of viscoplastic constitutive updates, Comput. Methods Appl. Mech. Eng., Volume 171 (1999) no. 3-4, pp. 419-444 | DOI

[35] Weimin Han; Søren Jensen; B. Daya Reddy Numerical approximations of problems in plasticity: error analysis and solution algorithms, Numer. Linear Algebra Appl., Volume 4 (1997) no. 3, pp. 191-204 | Zbl

[36] Quoc-Son Nguyen Quasi-static responses and variational principles in gradient plasticity, J. Mech. Phys. Solids, Volume 97 (2016), pp. 156-167 | DOI

[37] Henryk Petryk Incremental energy minimization in dissipative solids, C. R. Méc., Volume 331 (2003) no. 7, pp. 469-474 | DOI

[38] M. Ortiz; J. B. Martin Symmetry — preserving return mapping algorithms and incrementally external paths: a unification of concepts, Int. J. Numer. Methods Eng., Volume 28 (1989), pp. 1839-1853 | DOI

[39] Thomas Heuzé; Laurent Stainier A variational formulation of thermomechanical constitutive update for hyperbolic conservation laws, Comput. Methods Appl. Mech. Eng., Volume 394 (2022), 114893 | Zbl

[40] K. Kpotufe Modèles à gradient d’endommagement : cadre thermodynamique, formulation variationnelle et applications, Ph. D. Thesis, Sorbonne Université (France) and Université de Lomé (Togo) (2021)

[41] Kim Pham; Hanen Amor; Jean-Jacques Marigo; Corrado Maurini Gradient damage models and their use to approximate brittle fracture, Int. J. Damage Mech., Volume 20 (2011) no. 4, pp. 618-652 | DOI

[42] Blaise Bourdin; Gilles A. Francfort; Jean-Jacques Marigo Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, Volume 48 (2000) no. 4, pp. 797-826 | DOI

[43] Alain Ehrlacher; Bernard Fedelich Stability and bifurcation of simple dissipative systems: application to brutal damage, Cracking and damage. Strain localization and size effect (Z. P. Bazant; J. Mazars, eds.), Taylor & Francis, 1989, pp. 221-227

[44] M. S. Alnaes; J. Blechta; J. Hake; A. Johansson; B. Kehlet; A. Logg; C. Richardson; J. Ring; M. E. Rognes; G. N. Wells The FEniCS Project Version 1.5, Arch. Numer. Soft., Volume 3 (2015) no. 100, pp. 9-23 | DOI

[45] Automated solution of differential equations by the finite element method (A. Logg; K.-A. Mardal; G. N. Wells, eds.), Lecture Notes in Computational Science and Engineering, Springer, 2012 no. 84

[46] O. Coussy Poromechanics, Wiley Publishing, 2004

[47] Yuhao Liu; Keita Yoshioka; Tao You; Hanzhang Li; Fengshou Zhang A phase-field fracture model in thermo-poro-elastic media with micromechanical strain energy degradation, Comput. Methods Appl. Mech. Eng., Volume 429 (2024), 117165 | MR

[48] Dominique Leguillon A simple model of thermal crack pattern formation using the coupled criterion, C. R. Méc., Volume 341 (2013) no. 6, pp. 538-546 | DOI

[49] Luiz Felipe Faria Ricardo; Dominique Leguillon; Guillaume Parry; Aurelien Doitrand Modeling the thermal shock induced cracking in ceramics, J. Eur. Ceram. Soc., Volume 40 (2020) no. 4, pp. 1513-1521 | DOI

[50] Habibou Maitournam Mécanique des structures anélastiques, Éditions de l’École polytechnique, 2013

Cité par Sources :

Commentaires - Politique