[Une méthode variationnelle incrémentale pour le couplage entre gradient d’endommagement, thermoélasticité et conduction thermique]
In this work, we propose an incremental variational approach to study the coupling between gradient damage, thermoelasticity and heat conduction phenomena. To this end, we first extend the thermodynamics of linear thermoelasticity to incorporate gradient damage phenomena. After carefully introducing the concept of kinetic entropy to describe the interaction between thermoelasticity and heat conduction, this extension is implemented to establish a four-field incremental energy minimization procedure. By considering a suitable kinetic entropy approximation, the latter is then consistently reduced to a three-field (displacement, damage, and absolute temperature) dependency, numerically implemented by means of a staggered optimization algorithm. Applications consisting in a study of the cracking of a plate under thermal shocks are considered. The approach is shown to deliver reliable predictions, based on comparison to available experimental observations which is also provided.
Dans ce travail, nous proposons une approche variationnelle incrémentale pour étudier le couplage entre les phénomènes d’endommagement non local, thermoélasticité et conduction thermique. À cette fin, nous étendons d’abord le cadre thermodynamique de la thermoélasticité linéaire afin d’y intégrer les phénomènes d’endommagement non local. Après avoir soigneusement introduit le concept d’entropie cinétique pour décrire l’interaction entre thermoélasticité et conduction thermique, cette extension est mise en œuvre pour établir une procédure de minimisation de l’énergie incrémentale à quatre champs. En considérant une approximation adaptée de l’entropie cinétique, cette procédure est ensuite réduite de manière cohérente à une dépendance en trois champs (déplacement, endommagement et température absolue), mise en œuvre numériquement au moyen d’un algorithme d’optimisation alternée. Des applications sont proposées, consistant en l’étude de la fissuration d’une plaque soumise à des chocs thermiques. L’approche montre sa capacité à fournir des prédictions fiables, une comparaison avec les observations expérimentales disponibles étant également présentée.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Modèle à gradient d’endommagement, thermoélasticité, conduction thermique, formulation fondée sur la thermodynamique, approche variationnelle incrémentale
Banouho Kamagaté  1 , 2 ; Long Cheng  3 ; Radhi Abdelmoula  4 ; Emile Danho  2 ; Djimédo Kondo  1
CC-BY 4.0
@article{CRMECA_2025__353_G1_1063_0,
author = {Banouho Kamagat\'e and Long Cheng and Radhi Abdelmoula and Emile Danho and Djim\'edo Kondo},
title = {An incremental variational method to the coupling between gradient damage, thermoelasticity and heat conduction},
journal = {Comptes Rendus. M\'ecanique},
pages = {1063--1084},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {353},
doi = {10.5802/crmeca.325},
language = {en},
}
TY - JOUR AU - Banouho Kamagaté AU - Long Cheng AU - Radhi Abdelmoula AU - Emile Danho AU - Djimédo Kondo TI - An incremental variational method to the coupling between gradient damage, thermoelasticity and heat conduction JO - Comptes Rendus. Mécanique PY - 2025 SP - 1063 EP - 1084 VL - 353 PB - Académie des sciences, Paris DO - 10.5802/crmeca.325 LA - en ID - CRMECA_2025__353_G1_1063_0 ER -
%0 Journal Article %A Banouho Kamagaté %A Long Cheng %A Radhi Abdelmoula %A Emile Danho %A Djimédo Kondo %T An incremental variational method to the coupling between gradient damage, thermoelasticity and heat conduction %J Comptes Rendus. Mécanique %D 2025 %P 1063-1084 %V 353 %I Académie des sciences, Paris %R 10.5802/crmeca.325 %G en %F CRMECA_2025__353_G1_1063_0
Banouho Kamagaté; Long Cheng; Radhi Abdelmoula; Emile Danho; Djimédo Kondo. An incremental variational method to the coupling between gradient damage, thermoelasticity and heat conduction. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1063-1084. doi: 10.5802/crmeca.325
[1] Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., Volume 27 (1956) no. 3, pp. 240-253 | DOI
[2] New methods in heat flow analysis with application to flight structures, J. Aeronaut. Sci., Volume 24 (1957) no. 12, pp. 857-873 | DOI
[3] Theory of thermal stresses, John Wiley & Sons, 1962 | MR
[4] On a variational theorem in coupled thermoelasticity, J. Appl. Mech., Volume 32 (1965), pp. 943-945 | DOI
[5] On variational principles in thermoelasticity and heat conduction, Q. Appl. Math., Volume 21 (1963) no. 2, pp. 151-155 | DOI
[6] Thermal stresses in anisotropic bodies, Thermomechanics in solids. A symposium held at CISM, Udine, July 1974 (W. Nowacki; I. N. Sneddon, eds.) (CISM International Centre for Mechanical Sciences), Springer, 1977 no. 223, pp. 25-54
[7] Thermoelasticity, Elsevier, 1986 | DOI | MR
[8] On a principle of virtual work for thermo-elastic bodies, J. Elasticity, Volume 21 (1989) no. 2, pp. 131-146 | DOI
[9] On the search for variational principles, Int. J. Heat Mass Transfer, Volume 10 (1967) no. 6, pp. 799-821 | DOI
[10] Variational principles in thermomechanics, Recent developments in thermomechanics of solids (CISM International Centre for Mechanical Sciences), Springer, 1980 no. 262, pp. 221-396
[11] Thermoelasticity without energy dissipation, J. Elasticity, Volume 31 (1993) no. 3, pp. 189-208 | DOI
[12] Theoretical and computational aspects of non-classical thermoelasticity, Comput. Methods Appl. Mech. Eng., Volume 196 (2006) no. 1-3, pp. 516-527 | DOI
[13] A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids, J. Mech. Phys. Solids, Volume 54 (2006), pp. 401-424 | DOI
[14] Chapter Two — A variational approach to modeling coupled thermo-mechanical nonlinear dissipative behaviors, Adv. Appl. Mech., Volume 46 (2013), pp. 69-126 | DOI
[15] A time-integration scheme for thermomechanical evolutions of shape-memory alloys, C. R. Méc., Volume 334 (2006) no. 4, pp. 266-271 | DOI
[16] An incremental variational approach to coupled thermo-mechanical problems in anelastic solids. Application to shape-memory alloys, Int. J. Solids Struct., Volume 50 (2013) no. 24, pp. 4043-4054 | DOI
[17] Study and validation of a variational theory of thermo-mechanical coupling in finite visco-plasticity, Int. J. Solids Struct., Volume 47 (2010) no. 5, pp. 705-715 | DOI
[18] On the thermomechanical coupling in dissipative materials: a variational approach for generalized standard materials, J. Mech. Phys. Solids, Volume 82 (2015), pp. 218-234 | DOI
[19] Variational updates for general thermo-chemo-mechanical processes of inelastic solids, Comput. Methods Appl. Mech. Eng., Volume 385 (2021), 114013, 23 pages | Zbl
[20] A variational framework for the thermomechanics of gradient-extended dissipative solids—with applications to diffusion, damage and plasticity, J. Elasticity, Volume 148 (2022) no. 1, pp. 81-126 | DOI
[21] Morphogenesis and propagation of complex cracks induced by thermal shocks, Phys. Rev. Lett., Volume 112 (2014) no. 1, 014301, 5 pages
[22] Initiation of a periodic array of cracks in the thermal shock problem: a gradient damage modeling, J. Mech. Phys. Solids, Volume 63 (2014), pp. 256-284 | DOI
[23] Fracture of thermo-elastic solids: phase-field modeling and new results with an efficient monolithic solver, Comput. Methods Appl. Mech. Eng., Volume 376 (2021), 113648 | Zbl
[24] Thermal shock cracking in thin plate specimens using a gradient damage model, J. Mech. Mater. Struct., Volume 18 (2023) no. 1, pp. 19-38 | DOI
[25] Study the dynamic crack path in brittle material under thermal shock loading by phase field modeling, Int. J. Fract., Volume 208 (2017) no. 1, pp. 115-130
[26] Coupled thermoelastic theory and associated variational principles based on decomposition of internal energy, Acta Mech. Sin., Volume 36 (2020) no. 1, pp. 107-115 | DOI
[27] Quasi-static thermoelastic fracture: Adaptive phase-field modeling with variable-node elements, Theor. Appl. Fract. Mech., Volume 124 (2023), 103811
[28] Modeling quasi-static and dynamic thermo-elastic coupled brittle fracture using an adaptive isogeometric hybrid phase-field method, Finite Elem. Anal. Des., Volume 224 (2023), 103993
[29] A one-dimensional thermomechanical modeling of phase change front propagation in a SMA polycrystal, C. R. Méc., Volume 331 (2003), pp. 25-32 | Zbl
[30] Effect of crack pattern on the residual strength of ceramics after quenching, J. Am. Ceram. Soc., Volume 94 (2011) no. 9, pp. 2804-2807 | DOI
[31] Damage, gradient of damage and principle of virtual power, Int. J. Solids Struct., Volume 33 (1996) no. 8, pp. 1083-1103 | DOI
[32] Sur les matériaux standards généralisés, J. Méc., Paris, Volume 14 (1975) no. 1, pp. 39-63 | Zbl
[33] Incremental variational approach to gradient damage coupled with poroelasticity of saturated media, J. Mech. Phys. Solids, Volume 187 (2024), 105614
[34] The variational formulation of viscoplastic constitutive updates, Comput. Methods Appl. Mech. Eng., Volume 171 (1999) no. 3-4, pp. 419-444 | DOI
[35] Numerical approximations of problems in plasticity: error analysis and solution algorithms, Numer. Linear Algebra Appl., Volume 4 (1997) no. 3, pp. 191-204 | Zbl
[36] Quasi-static responses and variational principles in gradient plasticity, J. Mech. Phys. Solids, Volume 97 (2016), pp. 156-167 | DOI
[37] Incremental energy minimization in dissipative solids, C. R. Méc., Volume 331 (2003) no. 7, pp. 469-474 | DOI
[38] Symmetry — preserving return mapping algorithms and incrementally external paths: a unification of concepts, Int. J. Numer. Methods Eng., Volume 28 (1989), pp. 1839-1853 | DOI
[39] A variational formulation of thermomechanical constitutive update for hyperbolic conservation laws, Comput. Methods Appl. Mech. Eng., Volume 394 (2022), 114893 | Zbl
[40] Modèles à gradient d’endommagement : cadre thermodynamique, formulation variationnelle et applications, Ph. D. Thesis, Sorbonne Université (France) and Université de Lomé (Togo) (2021)
[41] Gradient damage models and their use to approximate brittle fracture, Int. J. Damage Mech., Volume 20 (2011) no. 4, pp. 618-652 | DOI
[42] Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, Volume 48 (2000) no. 4, pp. 797-826 | DOI
[43] Stability and bifurcation of simple dissipative systems: application to brutal damage, Cracking and damage. Strain localization and size effect (Z. P. Bazant; J. Mazars, eds.), Taylor & Francis, 1989, pp. 221-227
[44] The FEniCS Project Version 1.5, Arch. Numer. Soft., Volume 3 (2015) no. 100, pp. 9-23 | DOI
[45] Automated solution of differential equations by the finite element method (A. Logg; K.-A. Mardal; G. N. Wells, eds.), Lecture Notes in Computational Science and Engineering, Springer, 2012 no. 84
[46] Poromechanics, Wiley Publishing, 2004
[47] A phase-field fracture model in thermo-poro-elastic media with micromechanical strain energy degradation, Comput. Methods Appl. Mech. Eng., Volume 429 (2024), 117165 | MR
[48] A simple model of thermal crack pattern formation using the coupled criterion, C. R. Méc., Volume 341 (2013) no. 6, pp. 538-546 | DOI
[49] Modeling the thermal shock induced cracking in ceramics, J. Eur. Ceram. Soc., Volume 40 (2020) no. 4, pp. 1513-1521 | DOI
[50] Mécanique des structures anélastiques, Éditions de l’École polytechnique, 2013
Cité par Sources :
Commentaires - Politique
