Comptes Rendus
Optical telecommunications/Les télécommunications optiques
Advancements in passive planar lightwave circuits and hybrid integration devices
[Progrès dans les circuits optiques passifs à technologie plane et composants intégrés hybrides]
Comptes Rendus. Physique, Volume 4 (2003) no. 1, pp. 51-64.

La technologie d'intégration planaire de composants à base silice permet le filtrage, le routage et la commutation. Elle rend également possible l'atténuation de signaux optiques pour les applications de réseaux photoniques multiplexés en longueur d'onde (WDM). Au fur et à mesure de l'expansion de la capacité de réseau, il faut augmenter la complexité, l'échelle et la densité de ces fonctions tout en réduisant le coût associé. Il est également important de ne pas compromettre les performances optiques et la stabilité à long terme de ces composants. Nous passons en revue les progrès récemment effectués dans ce domaine sur le plan de la fabrication à grande échelle, nous concentrant particulièrement sur les paramètres-clé que représentent les pertes d'insertion et les pertes dûes à la polarisation (PDL) pour les composants de filtrage et d'intégration hybride.

Planar silica device technology provides the ability to filter, route, switch, and attenuate optical signals for Wavelength Division Multiplexing (WDM) based photonic networks. As network capacity expands there is a requirement to increase the complexity, scale and density of the functions whilst reducing cost. It is also important that both the optical performance and long term stability of the devices are not compromised. The following paper reviews recent progress on these types of devices for large-scale manufacture, concentrating on key performance parameters for filter type structures and hybrid integrated devices such as insertion loss and polarisation dependent loss (PDL).

Reçu le :
Publié le :
DOI : 10.1016/S1631-0705(02)00003-8
Keywords: Integrated optics, Array waveguide gratings, Wavelength division multiplexing, Variable optical attenuator, Integrated tap detector, Semiconductor optical amplifier, Hybrid integration, Fabrication
Mot clés : Optique intégré, Réseaux en faisceaux de guides d'onde, Multiplexage en longueur d'onde, Atténuateur optique variable, Échantilonneur de signal intégré, Amplificateur à semi-conducteur, Intégration hybride, Fabrication
James R. Bonar 1 ; Russell Childs 1 ; Richard I. Laming 1

1 Alcatel Optronics UK Ltd, Starlaw Park, Starlaw Road, Livingston EH54 8SF, UK
@article{CRPHYS_2003__4_1_51_0,
     author = {James R. Bonar and Russell Childs and Richard I. Laming},
     title = {Advancements in passive planar lightwave circuits and hybrid integration devices},
     journal = {Comptes Rendus. Physique},
     pages = {51--64},
     publisher = {Elsevier},
     volume = {4},
     number = {1},
     year = {2003},
     doi = {10.1016/S1631-0705(02)00003-8},
     language = {en},
}
TY  - JOUR
AU  - James R. Bonar
AU  - Russell Childs
AU  - Richard I. Laming
TI  - Advancements in passive planar lightwave circuits and hybrid integration devices
JO  - Comptes Rendus. Physique
PY  - 2003
SP  - 51
EP  - 64
VL  - 4
IS  - 1
PB  - Elsevier
DO  - 10.1016/S1631-0705(02)00003-8
LA  - en
ID  - CRPHYS_2003__4_1_51_0
ER  - 
%0 Journal Article
%A James R. Bonar
%A Russell Childs
%A Richard I. Laming
%T Advancements in passive planar lightwave circuits and hybrid integration devices
%J Comptes Rendus. Physique
%D 2003
%P 51-64
%V 4
%N 1
%I Elsevier
%R 10.1016/S1631-0705(02)00003-8
%G en
%F CRPHYS_2003__4_1_51_0
James R. Bonar; Russell Childs; Richard I. Laming. Advancements in passive planar lightwave circuits and hybrid integration devices. Comptes Rendus. Physique, Volume 4 (2003) no. 1, pp. 51-64. doi : 10.1016/S1631-0705(02)00003-8. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)00003-8/

[1] M.F. Grant Critical Rev. Sci. Technol., CR53 (1994), pp. 55-80

[2] I.P. Kaminow IEEE J. Select. Areas Commun., 14 (1996), pp. 780-799

[3] O. Blume, G. Robert, J.L. Nicque, A. Ambrosy, D. Ferling, K. Matthies, K. Rueß, M. Schilling, S. Schneider, F. Boubal, S. Rabaron, D. Tregoat, C. Artigue, in: Proc. European Conference on Optical Communication, ECOC '2000, Vol. 1, Paper 2.3.3, p. 87

[4] Y. Akahori; I. Ogawa; T. Hashimoto; T. Ohyama; T. Tanaka; T. Kurosaki; Y. Tohmori NTT Rev., 13 (2001), pp. 42-49

[5] G. Maxwell, B. Manning, M. Nield, M. Harlow, K. Ford, M. Clements, S. Lucas, P. Townley, R. McDougall, R. Cecil, L. Johnston, A. Poustie, R. Webb, I. Lealman, L. Rivers, J. King, S. Perrin, R. Moore, I. Reid, D. Scrase, in: Proc. European Conference on Optical Communication, ECOC '2002, PD 3.5

[6] M. Kawachi Optical Quantum Electronics, 22 (1990), pp. 391-416

[7] W. Chen, C.D. Lee, Q. Wang, Y. Chen, W.T. Beard, D. Stone, R.F. Smith, R. Mincher, I.R. Stewart, in: Proceedings of SPIE 2000, Vol. 4087, pp. 283–292

[8] E.S. Koteles Fiber and Integrated Optics, Taylor and Francis, 1999, pp. 211-244

[9] M.V. Bazylenko; M. Gross Appl. Phys. Lett., 69 (1996), pp. 2178-2180

[10] A.J. McLaughlin; J.R. Bonar; M.G. Jubber; P.V.S. Marques; S.E. Hicks; C.D.W. Wilkinson; J.S. Aitchison J. Vac. Sci. Technol. B, 16 (1998), pp. 1860-1863

[11] M. Morimoto, K. Sato, A. Mugino, H. Tamura, M. Neal, A.L. Sidman, in: Proc. of National Fibre Optic Engineers Conference, NFOEC '2001, pp. 931–942

[12] Y. Oppliger; P. Sixt; J.M. Stauffer; J.M. Mayor; P. Regnault; G. Voirin Microelectronic Engrg., 23 (1994), pp. 449-454

[13] M.K. Smit Electron. Lett., 24 (1988), pp. 385-386

[14] C. Dragone An N×N optical multiplexer using a planar arrangement of two star couplers, IEEE Photon. Technol. Lett., 3 (1991), pp. 812-815

[15] H. Takahashi; S. Suzuki; K. Kato; I. Nishi Electron. Lett., 26 (1990), pp. 87-88

[16] V. Tandon; M. Volanthen; M.V.D. Vleit; J. Bonar WDM Solutions (2001), pp. 35-42

[17] O. Mitomi; K. Kasaya; H. Miyazawa IEEE J. Quantum Electron., 30 (1994), pp. 1787-1793

[18] M.M. Spuhler; B.J. Offrein; G.L. Bona; R. Germann; I. Massarek; D. Erni J. Lightwave Technol., 16 (1998), pp. 1680-1685

[19] K. Takada; T. Tanaka; M. Abe; T. Yanagisawa; M. Ishii; K. Okamoto Electron. Lett., 36 (2000), pp. 60-61

[20] H. Yamada; K. Takada; Y. Inoue; Y. Ohmori; S. Mitachi Electron. Lett., 32 (1996), pp. 1580-1582

[21] T. Takada; Y. Inoue; H. Yamada; M. Horiguchi Electron. Lett., 30 (1994), pp. 1671-1672

[22] J.A. Lazaro, R. Wessel, J. Koppenborg, G. Dudziak, I.J. Blewett, IEEE Photon Technol. Lett., accepted

[23] S.M. Ojha; C. Cureton; T. Bricheno; S. Day; D. Moule; A.J. Bell; J. Taylor Electron. Lett., 34 (1998), pp. 78-79

[24] S. Suzuki; S. Sumida; Y. Inoue; M. Ishii; Y. Ohmori Electron. Lett., 33 (1997), pp. 1173-1174

[25] A. Kilian; J. Kirchof; B. Kuhlow; G. Przyembel; W. Wischmann J. Lightwave Technol., 18 (2000), pp. 193-198

[26] E. Wildermuth; C. Nadler; M. Lanker; W. Hunziker; H. Melchior Electron. Lett., 34 (1998), pp. 1661-1663

[27] Y. Inoue; Y. Ohmori; M. Kawachi; S. Anso; T. Sawada; H. Takahashi IEEE Photon. Technol. Lett., 6 (1994), pp. 626-628

[28] Y. Inoue, M. Itoh, Y. Hashizume, Y. Hibino, A. Sugita, A. Himeno, in: Proc. of Optical Fiber Communication, OFC '2001, WB4

[29] S. Suzuki; Y. Inoue; Y. Ohmori Electron. Lett., 30 (1994), pp. 642-643

[30] R. Childs, M. Volanthen, J. Bos, D.G. Ortega, G. Gordon, A. Pujol, International Patent Application WO 02/14916 A2

[31] C. Caspar, H.M. Foisel, C.V. Helmolt, B. Strebel, Y. Sugaya, in: Proc. European Conference on Optical Communication, ECOC '1997, pp. 91–94

[32] G. Lenz; B.J. Eggleton; C.K. Madsen; C.R. Giles; G. Nykolak IEEE Photon. Technol. Lett., 10 (1998), pp. 567-569

[33] M.R. Amersfoort; C.R.D. Boer; F.B.G.V. Ham; M.K. Smit; P. Demeester; J.J.G.M.V.D. Tol; A. Kuntze Electron. Lett., 30 (1994), pp. 300-302

[34] K. Okamoto; A. Sugita Electron. Lett., 32 (1996), pp. 1661-1662

[35] C. Dragone; T. Strasser; G.A. Bogert; L.W. Stulz; P. Chou Electron. Lett., 33 (1997), pp. 1312-1314

[36] M. Kohtoku; H. Takahashi; T. Kitoh; T. Shibita; Y. Inoue; Y. Hibino Electron. Lett., 38 (2002), pp. 792-794

[37] H. Yamada; K. Okamoto; A. Kaneko; A. Sugita Optics Lett., 25 (2000), pp. 569-571

[38] B.J. Offrein; F. Horst; G.L. Bona; R. Germann; H.W.M. Salemink; R. Beyeler IEEE Photon. Technol. Lett., 12 (2000), pp. 504-506

[39] C.R. Doerr; W.L. Stulz; R. Pafchek; L. Gomez; M. Cappuzzo; A. Paunescu; E. Laskowski; L. Buhl; H.K. Kim; S. Chandrasekhar IEEE Photon. Technol. Lett., 12 (2000), pp. 1195-1197

[40] W. Noell; P.A. Clerc; L. Dellmann; B. Guldimann; H.P. Herzig; O. Manzardo; C.R. Marxer; K.J. Weible; R. Dandliker; N.D. Rooij IEEE J. Selected Topics in Quantum Electron., 8 (2002), pp. 148-154

[41] W.C. Tang; M.G. Lim; R.T. Howe J. Microelectromech. Systems, 1 (1992), pp. 170-178

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Challenges and advances of photonic integrated circuits

Hélène Debrégeas-Sillard; Christophe Kazmierski

C. R. Phys (2008)


Science and technology challenges in XXIst century optical communications

E. Desurvire; C. Kazmierski; F. Lelarge; ...

C. R. Phys (2011)


Two-dimensional photonic crystals: new feasible confined optical systems

Henri Benisty; Maxime Rattier; Ségolène Olivier

C. R. Phys (2002)